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ABSTRACT

In this thesis, we present four results concerning the computing capabilities of chemical

reaction networks (CRNs) under deterministic mass action semantics2: (1) we introduce

a modular method for computing concentration signals using CRN extension operators;

(2) we present a thorough analysis of two CRN signal restoration algorithms that prevent

certain concentration signals from degrading over time; (3) we introduce a new model

called input/output chemical reaction networks (I/O CRNs) which generalizes the CRN

model to allow receiving input signals over time; and (4) we investigate what I/O CRNs

can compute robustly and prove that I/O CRNs are capable of robustly simulating any

nondeterministic finite automaton (NFA).

CRN extension operators are operations that can be applied to a CRN to add extra

functionality without affecting its original behavior. We show that common operators such

as addition, multiplication, integration, and many others can be characterized as CRN

extension operators. By iteratively applying these extensions, complex concentration

signals can be modularly constructed from simple CRNs. To explore the full generality

of these extensions, we introduce a notion of weakly CRN-computable signals and show

that any CRN that can weakly compute a signal can be extended to exactly compute it.

The two signal restoration algorithms that we investigate are related to the approximate

majority algorithm for population protocols originally developed by Angluin, Aspnes,

and Eisenstat. Under deterministic semantics, these algorithms are commonly used to

prevent discrete memory from deteriorating over time. We investigate the behavior of

these algorithms in the presence of adversarial reactions and show that under modest

2 CRNs under deterministic mass action semantics are also referred to as “mass action CRNs” or
“CRNs with mass action kinetics.”
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conditions they are capable of maintaining discrete memory indefinitely. We also give

tight analytical bounds on how these algorithms evolve over time.

The I/O CRN model that we introduce has two important impacts. (1) Concentration

signals are a more natural way to provide arbitrarily long inputs to a CRN. Classical CRNs

are restricted to encoding inputs into the initial state of the system which makes providing

an arbitrarily long input (e.g. a binary string) quite difficult. (2) It promotes modular

design of CRNs. Designing chemical systems from modular components that communicate

via concentration signals is now possible, and we demonstrate its effectiveness in multiple

constructions including our I/O CRN implementation of NFAs.

Our notion of robustness requires that an I/O CRN tolerate perturbations with respect

to four things, namely, its initial state, rate constants, input signal, and the measurement

of its output signal. We investigate what I/O CRNs are capable of computing under this

notion of robustness, and we prove that I/O CRNs can robustly compute the regular

languages by simulating an NFA in real time.
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CHAPTER 1. INTRODUCTION

Molecular programming, also called DNA nanotechnology, is an emerging field of

research aiming to algorithmically control the structure and function of matter at the

molecular level. The origin of the field is attributed to Seeman in 1982 for his work

on self-assembling DNA crystals [58] along with Winfree’s 1998 work proving that this

DNA self-assembly technique is, in principle, Turing universal [68]. Since then, the

advancements of molecular programming have proceeded at a rate comparable to Moore’s

law and have led to methods for precise delivery of nanoscale cargo [25, 66, 19, 59],

self-assembling arbitrary two- and three-dimensional nano-structures [56, 38, 11], and

implementing DNA-based circuits and neural nets [52, 53, 54]. Many useful models for

chemical systems have also been proven to be Turing universal [6, 20, 51, 57], including

certain types of chemical reaction networks [63].

Chemical reaction networks (CRNs) are an abstract mathematical model used to study

the dynamics of well-mixed chemical systems, and they date back to Aris’ work in 1965 [8].

In the 20th century, CRNs were used to study various chemical phenomena and to explore

interesting chemical behavior that might be possible. They were not considered a practical

design tool, because finding actual chemicals to implement a CRN was often a long and

difficult process. Today, CRNs are regarded as a programming language (in the literal

sense of computer science) due to some results in the last decade. In 2009, Soloveichik,

Seelig, and Winfree showed that any CRN can, in principle, be implemented with DNA

strands [24], and their work has since been refined into a CRN-to-DNA compiler [18].

These DNA constructions simulate the chemical reactions of a CRN with a process called
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DNA strand displacement introduced by Yurke et al. in 2000 [69, 46, 70, 65]. Due to

this CRN compiler, CRNs became a more practical development tool, and understanding

their computing ability became an important research topic.

CRNs are used to model several types of chemical systems and as a result have

multiple semantics (i.e. operational meanings). The two most prevalent CRN semantics

are called stochastic mass action semantics and deterministic mass action semantics, and

we often refer to CRNs under such semantics as stochastic CRNs and deterministic CRNs,

respectively. Stochastic CRNs (SCRNs) discretely model the state of the system (i.e.

amount of each molecule present) as a vector of integers and are used to model chemical

systems contained in a small volume (e.g. inside a cell). The SCRN model is essentially

equivalent to other well-known models of computation such as Petri nets [49, 35], vector

addition systems [50, 43], and population protocols [6, 23]. SCRNs have also been shown

to be Turing universal if some small probability of error is allowed [63], but without error

they are limited to computing the semi-linear predicates [4]. Other important SCRN

computability results can be found in [20, 23, 21, 15, 16] and the references therein.

Deterministic CRNs (DCRNs) model the state of the system as a vector of real-valued

concentrations and are used to model chemical systems in relatively large volumes which

can be modeled continuously1. The DCRN model is the deterministic limit of the SCRN

model [45, 31], and a state of a DCRN evolves according to autonomous polynomial

ordinary differential equations (ODEs). DCRNs only form a restricted class of polynomial

ODEs but are capable of approximating any polynomial system with arbitrarily small

error, over any fixed time interval, and with only bimolecular reactions [42, 41, 67]. They

can also be used to implement various models of computation including finite logic circuits

and register machines with bounded register capacity [37]. Today it remains an open

question whether DCRNs are Turing universal (i.e. simulate a Turing machine with

unbounded memory). Several claims that DCRNs are universal have surfaced including

1 A single milliliter of water at room temperature contains over 1022 molecules, so “relatively large”
here includes some fairly small volumes.



www.manaraa.com

3

Magnasco [48] and Stansifer [20]. However, Magnasco only demonstrates that DCRNs

can simulate finite circuits, and Stansifer’s proof has not appeared in print. Arbitrary

polynomial ODEs are legitimately Turing universal [32], but this construction uses ODEs

that are not implementable by DCRNs [34].

These computability results make CRNs an attractive model for molecular program-

ming, but there are numerous obstacles to overcome before they truly become practical.

One obstacle is that CRNs are rather primitive, and even simple algorithms such as

detecting the absence of a signal are challenging to design [27, 26]. Software tools such as

Microsoft Visual GEC2 and MATLAB SimBiology3 provide molecular programmers with

CRN simulation utilities, but the burden of design is still left to the developer.

Another obstacle is robustness. Many applications of molecular programming are

safety critical, therefore ensuring that a CRN can tolerate worst case conditions is often

necessary. Furthermore, the CRN model is only an approximation of a physical system,

so CRNs that depend on unrealistically precise parameters have little hope of functioning

once physically implemented. This has led to research of the CRN model when parameters

are not well defined, such as initial conditions [60, 2] and rate constants [17, 16, 62], but

for CRNs to truly be practical, they must be robust with respect to both of these aspects.

In this thesis, we present results regarding the deterministic CRN model that help

toward overcoming these two obstacles. To reduce the burden of CRN design, we introduce

two separate notions for modular CRN development. The first notion is called a closed

sub-CRN which is a CRN that is “contained within another CRN.” Closed sub-CRNs are

defined using a Kuratowski closure operator [10, 61] that guarantees that the sub-CRN is

“closed” in the sense that it does not depend on the enclosing CRN in any way. However,

the enclosing CRN may depend on the sub-CRN to facilitate a more complex computation.

Thus closed sub-CRNs can be regarded as independent modules of the enclosing CRN

and can be studied and tested in isolation.

2 Visual GEC by Microsoft: http://lepton.research.microsoft.com/webgec.
3 MATLAB SimBiology by MathWorks, Inc.: http://www.mathworks.com/products/simbiology.

http://lepton.research.microsoft.com/webgec
http://www.mathworks.com/products/simbiology
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We formally introduce closed sub-CRNs in section 2.1, and in chapter 3 we explore

their use for computing complex concentration signals. Specifically, we use closed sub-

CRNs to define CRN extension operators which are operations that can be used to

extend CRNs in certain ways. When an extension operator is applied to a CRN, it

produces a new CRN that contains new functionality while preserving the behavior of the

original CRN with a closed sub-CRN. CRN extension operators are related to Cardelli’s

notion of CRN morphisms [14], and every CRN produced by a CRN extension operator

can emulate the original CRN via one of these morphisms. We also prove that many

common operators can be formulated as CRN extension operators including addition,

multiplication, integration, and many others. By iteratively applying extension operators,

it is possible to modularly construct complex concentration signals from relatively simple

CRNs. To fully explore the generality of this extension method, we define a notion for

CRNs weakly computing a concentration signal. We say that a CRN weakly computes

a concentration signal if that concentration signal can be produced by a polynomial

combination of the output signals of the CRN. We also prove that if a CRN can weakly

compute a signal, then it can be extended via an operator to explicitly compute that

signal.

Our second notion of modularity is introduced in chapter 5 and is a new model called

input/output chemical reaction networks (I/O CRNs). An I/O CRN is a generalization of

a deterministic CRN that has a provision for receiving input over time via a concentration

signal and naturally promotes modular development. For instance, a complex I/O CRN

could be composed of two or more simpler I/O CRNs that pass signals to and from one

another. These smaller I/O CRNs might be dependent on one another via these signals,

so neither of the I/O CRNs could be considered closed in the same sense of a closed

sub-CRN. Rather, these I/O CRNs are dependent on one another through an interface of

the concentration signals passed between them. In the classic CRN model, two processes

that depend on one another cannot be easily separated and tested in isolation. Whereas,
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the I/O CRN model naturally supports this separation, making it easier to develop

complex systems by joining multiple modules together.

Another major aspect of this thesis concerns robustness. In chapter 5 we also define

what it means for an I/O CRN to robustly satisfy a requirement. Specifically, our notion

of robustness requires that an I/O CRN be robust with respect to four things: (i) input

signal, (ii) initial state, (iii) rate constants, and (iv) output measurement. We chose

these four aspects because if an I/O CRN fails to be robust in any of these ways, there

often are significant consequences. In practice, we do not have perfectly precise control

over these areas. For instance, even with a CRN-to-DNA compiler, rate constants can

only be approximated. Therefore if a CRN depends on these rate constants being exact,

it certainly will not behave as designed. Even the assumption that rate constants are

actually “constant” is not appropriate because fluctuations in temperature and other

environmental factors cause these rate constants to vary over time. Similarly, an I/O

CRN that requires a perfectly precise input signal or initial condition cannot always be

relied upon, so it is important to be able to tolerate perturbations in these as well.

Using this notion of robustness, in chapter 6 we present an I/O CRN that is capable of

robustly cleaning up an input signal that encodes a binary sequence. More precisely, these

concentration signals encode bits by the contrast of “high” and “low” concentrations.

The signal conditioning I/O CRN specifically takes input signals of this form and “cleans

them up” so that the output signal better approximates an ideal square wave. One of the

most interesting challenges overcome by this I/O CRN is that it is capable of getting

the output signal to be arbitrarily close to zero when it needs to be low. Therefore this

system can be easily used to prepare signals to be used as a switch to cleanly turn on and

off certain modules of an I/O CRN. In fact, our I/O CRN construction for computing

NFAs heavily relies on the signal conditioning I/O CRNs presented in this chapter.

In chapter 7, we show that I/O CRNs are capable of robustly simulating nondeter-

ministic finite automata (NFAs). NFAs are over half a century old [55] and far from
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Turing universal, but they have many applications and remain an active research topic

[12, 36, 13]. We translate an arbitrary NFA to an I/O CRN that simulates it in real time,

processing each input symbol before the next one arrives, and it does so with a number

of molecular species that is linear in the size of the NFA that it implements. The I/O

CRN also consists of two modules. The first module is the signal conditioning module

constructed in chapter 6.1 that transforms the input signals into approximate square

waves. The second module actually simulates the NFA by computing the transition

function and encoding the current states by contrasting high and low concentrations of

state species.

Our NFA translation also depends on a signal restoration algorithm which is a memory

refresh technique that utilizes bistability to prevent these concentration signals from

deteriorating over time. In chapter 4, we give a thorough analysis of two signal restoration

algorithms in deterministic CRNs and give sufficient conditions for their correctness even

in the presence of adversarial reactions. The first algorithm consists of two termolecular

reactions (reactions with three reactants, i.e., input molecules) and is the simpler of

the two algorithms [40, 37]. The simplicity of this algorithm makes it easy to use and

relatively easy to analyze. We also give an exact analytical solution for the runtime of

this algorithm that demonstrates that the algorithm converges in logarithmic time.

The second signal restoration algorithm consists of four bimolecular reactions and

was developed in 2008 by Angluin, Aspnes, and Eisenstat for population protocols [23, 3].

This second algorithm is significantly harder to analyze, but it has the advantage that

bimolecular reactions are easier to physically implement. By utilizing a precise relationship

with the termolecular algorithm, we give precise asymptotic analysis of the algorithm and

sufficient conditions for it to work in the presence of adversarial reactions. We also give

tight analytical bounds on its runtime and show it also converges in logarithmic time.
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CHAPTER 2. CHEMICAL REACTION NETWORKS∗

In this chapter we review the chemical reaction network model under deterministic

mass action semantics. Formally, we fix a countable set S whose elements we call species.

Species are abstract molecule types and are typically denoted by capital roman characters

(e.g. X, Y, Z), but to differentiate species that are related we often use various decorations

to differentiate between them (e.g. X,X0, X, X̂).

A reaction over a finite set S ⊆ S is a triple ρ = (r,p, k) where r ∈ NS is the reactant

vector, p ∈ NS is the product vector, and k ∈ (0,∞) is the rate constant, respectively.

Here we use X Y to denote the set of all functions mapping the set Y into X . Therefore

elements of NS can naturally be regarded as vectors of natural numbers that are indexed

by the elements of S. Given a reaction ρ = (r,p, k), we use the notation r(ρ) = r,

p(ρ) = p, and k(ρ) = k to access the individual components of ρ.

For a reaction ρ = (r,p, k), a species X ∈ S is called a reactant of ρ if r(X) > 0, called

a product of ρ if p(X) > 0, and called a catalyst of ρ if r(X) = p(X) > 0. Intuitively, the

reactants and products of a reaction are the molecules consumed and produced by the

reaction, respectively. The net effect of a reaction ρ is the vector ∆ρ = p(ρ)− r(ρ) ∈ ZS.

We also borrow the intuitive notation of chemistry to specify reactions. For example,

if S = {A,B,C} ⊆ S, we write

A+ 2B
k−−→ A+ C (2.1)

∗ The exposition in this chapter is joint work with Jim Lathrop and Jack Lutz and appeared in
earlier form in [40].
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to specify the reaction ρ where k(ρ) = k and the vectors r(ρ) and p(ρ) are defined by

r(ρ)(A) = 1, r(ρ)(B) = 2, r(ρ)(C) = 0,

p(ρ)(A) = 1, p(ρ)(B) = 0, p(ρ)(C) = 1.

Here the species A and B are the reactants of ρ, A and C are the products of ρ, and

the net effect of the reaction is the vector defined by ∆ρ(A) = 0, ∆ρ(B) = −2, and

∆ρ(C) = 1. The species A is also a catalyst of ρ because it participates in the reaction

but is unaffected by it.

A chemical reaction network (CRN ) is an ordered pair N = (S,R) where S ⊆ S is

a finite set of species and R is a finite set of reactions over S. At this point, we have

fully specified the syntax of a CRN. The rest of the chapter is dedicated to specifying the

deterministic mass action semantics of CRNs.

Under deterministic mass action semantics, a state of a CRN N = (S,R) is a vector

x ∈ [0,∞)S, and for each Y ∈ S, we call x(Y ) the concentration of Y in x.

Given a finite set S ⊆ S of species, we define the S-signal space to be the set

C[S] = C([0,∞), [0,∞)S), where C(X ,Y) is the set of continuous functions from X to Y .

A function x ∈ C[S] is called a concentration signal and assigns a state x(t) ∈ [0,∞)S to

each time t ∈ [0,∞). (Our use of x to denote both a single state and a concentration signal

is deliberate to reduce obfuscation.) If a concentration signal x ∈ C[S] is obvious from

context, for each species Y ∈ S we use the corresponding lowercase character y to denote

the concentration of Y in the concentration signal x. For example, if S = {X, Y, Z}, then

we write x(t), y(t), and z(t) to denote the concentrations x(t)(X), x(t)(Y ), and x(t)(Z)

at time t, respectively.

Given a CRN N = (S,R), a reaction ρ ∈ R, and a state x ∈ [0,∞)S, we define the

rate of ρ ∈ R in x to be the real-valued quantity

ratex(ρ) = k(ρ)
∏
Y ∈S

x(Y )r(ρ)(Y ). (2.2)



www.manaraa.com

9

Therefore, if ρ is the reaction A + 2B
k−−→ A + C, then ratex(ρ) = k · x(A) · x(B)2.

Intuitively, the rate of a reaction is proportional to the frequency the reactants collide

with one another, and the rate constant encapsulates factors that do not depend on the

state (e.g. temperature).

For a CRN N = (S,R) and species Y ∈ S, the deterministic mass action rate function

of Y in N is the function FY : [0,∞)S → R defined by

FY (x) =
∑
ρ∈R

∆ρ(X) · ratex(ρ) (2.3)

for all x ∈ [0,∞)S. The function FY (x) specifies the total rate at which the concentration

of Y is changing in the state x. Hence, if the CRN N = (S,R) is in the state x(t) ∈ [0,∞)S

at time t, then each species Y ∈ S must satisfy the ordinary differential equation (ODE)

y′(t) = FY (x(t)). (2.4)

We say that a state x ∈ [0,∞)S is an equilibrium state (or equilibrium point) if FY (x) = 0

for all Y ∈ S.

If we define the vector-valued function F : [0,∞)S → RS by

F (x) = (FY (x) | Y ∈ S) (2.5)

for all x ∈ [0,∞)S, then the deterministic mass action system of the CRN is the vector

x′(t) = F (x(t)). (2.6)

An initialized chemical reaction network (ICRN ) is an ordered pair (N,x0) where

N = (S,R) is a CRN and x0 ∈ [0,∞)S is an initial state of N . The ICRN (N,x0)

specifies an initial value problem consisting of the mass action system (2.6) along with
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the initial condition y(0) = x0(Y ) for all Y ∈ S. By the standard existence-uniqueness

theory for ODEs [7, 64], this initial value problem has a unique solution xN,x0 ∈ C[S]

defined for some interval [0, b) where b ∈ (0,∞].

Note that CRNs are autonomous in the two equivalent senses that (i) the right-

hand side of the system (2.6) only depends on the time t indirectly, via the state x(t);

and (ii) once the initial state x(0) is determined, the CRN’s state evolves according to

(2.6) without further outside influence. It is also clear by inspection of (2.2)-(2.6) that

the deterministic mass action system (2.6) of a CRN is polynomial, meaning that the

components of the vector F (x(t)) are polynomial in the components y(t) of x(t).

We define the solution space of a CRN N = (S,R) to be the set

sol(N) = {xN,x0 | x0 ∈ [0,∞)S} (2.7)

of solutions ranging over all possible initial states. For each solution x ∈ sol(N), we

define the domain of x, and we write dom(x), to be the maximal interval [0, b) for which

x is defined.

Under deterministic mass action semantics, the set sol(N) completely specifies the

possible behaviors of the CRN N = (S,R). Further discussions of chemical reaction

networks with deterministic mass action semantics appear in [29, 28, 33, 47].

2.1 Closed Sub-CRNs

In this section, we formally define our notion of a closed sub-CRN, but first we define

some necessary notation and terminology needed to specify the notion properly.

Let N = (S,R) be a CRN. For species X ∈ S and Y ∈ S and reaction ρ ∈ R, we say

that X affects Y via ρ, and we write X −→
ρ
Y , if r(ρ)(X) > 0 and ∆ρ(Y ) 6= 0. In other

words, X −→
ρ
Y if and only if the rate of the reaction ρ depends on the concentration of

X in some way and ρ has a non-zero net effect on Y .
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Let fn : P(S)→ P(S) for all n ∈ Z+ be a family of functions defined by the recursion

f 1(T ) = {Y | (∃X ∈ T )(∃ρ ∈ R) X −→
ρ
Y }, (2.8)

fn+1(T ) = f 1(fn(T )), (2.9)

for all T ⊆ S. Here we are using P(S) to denote the power set of the set S (i.e. the set

of all possible subsets of S). For T ⊆ S, let the sets ST ⊆ S and RT ⊆ R be defined by

ST =
∞⋃
i=1

fn(T ), (2.10)

RT = {ρ ∈ R | (∃X ∈ ST ) ∆ρ(X) 6= 0}, (2.11)

noting that ST and RT are both finite. We call the CRN NT = (ST , RT ) the closure of

T in N .

We say N = (S,R) is a closed sub-CRN of N̂ = (Ŝ, R̂), and we write N E N̂ , if

N = N̂S. Intuitively, N E N̂ holds when N is closed in the sense that it is unaffected by

the parts of N̂ outside of N , and therefore N is completely independent and self-sustaining.

However, the CRN N̂ may depend on the closed sub-CRN N contained within it.

If N = (S,R) is a CRN, T ⊆ S and x ∈ [0,∞)S is a state of N , then the restriction

of x to T is the projection xT ∈ [0,∞)T defined by

xT (Y ) = x(Y ) (2.12)

for all Y ∈ T . Similarly, if x ∈ C[S] is a concentration signal, the restriction of x to T is

the vector-valued function xT defined by

xT (t)(Y ) = x(t)(Y ) (2.13)

for all t ∈ [0,∞) and Y ∈ T .
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CHAPTER 3. CRN EXTENSION OPERATORS∗

In this chapter, we examine the possible concentration signals that CRNs can produce

and introduce a modular means of constructing these signals via CRN extension operators.

We begin by formally defining what it means for a concentration signal to be CRN-

computable along with other definitions necessary to develop this notion. We then prove

various closure properties of the set of CRN-computable concentration signals. These

properties are intentionally proven in a way that makes designing modular concentration

signals natural.

Definition 3.1. A concentration signal u ∈ C[U ] is CRN-computable if there exists a

CRN N = (S,R) with U ⊆ S that has a solution x ∈ sol(N) such that xU = u. The set

of all such CRN-computable concentration signals is denoted CCRN.

It is important to note that a CRN may use auxiliary species that do not appear in

the computed signal (i.e. the set S \ U may be non-empty). This greatly increases the

total number of CRN-computable functions because extra dimensions may be utilized to

compute the signal.

Example 3.2. The concentration signal x(t) = et is CRN-computable.

Proof. Let N = (S,R) be a CRN with S = {X} and R = {ρ} where ρ is the reaction

X
1−−→ 2X. Let x0 ∈ [0,∞)S be an initial state of N such that x0(X) = 1. Then the

ICRN (N,x0) has a unique solution x ∈ sol(N). It suffices to show that this solution

satisfies x(t) = et for all t ∈ [0,∞).

∗ The material in this chapter is joint work with Jim Lathrop and Jack Lutz and will appear in a
forthcoming paper.



www.manaraa.com

13

According to equation (2.4), the concentration x(t) must obey the ODE

x′(t) = x(t). (3.1)

This ODE is easily solvable by separation of variables and has solution x(t) = x(0) · et. It

follows by the initial condition x(0) = 1 that x(t) = et for all t ∈ [0,∞).

Although in the above example we built the concentration signal for X from scratch,

this proves to be difficult for complicated signals. Therefore we now begin developing a

natural means of extending existing CRN-computable concentration signals to produce

more complex signals.

Definition 3.3. A concentration signal operator is a function H : C[U ]→ C[V ] where

U, V ⊆ S are finite and U ∩ V = ∅. We say that the set CCRN of CRN-computable

functions is closed under operator H if for all u ∈ C[U ]

u ∈ CCRN =⇒ H(u) ∈ CCRN.

This notion of a concentration signal operator is not only useful for proving closure

properties on the set CCRN but also for modular development of concentration signals.

Definition 3.4. A concentration signal operator H : C[U ] → C[V ] is an extension

operator if for every CRN N = (S,R) with U ⊆ S and S ∩ V = ∅, there exists a CRN

N̂ = (Ŝ, R̂) such that N E N̂ , V ⊆ Ŝ, and for every solution x ∈ sol(N), there exists a

solution x̂ ∈ sol(N̂) where x̂S = x and x̂V = H(xU).

Observation 3.5. The set CCRN of CRN-computable signals is closed under all

extension operators.

Intuitively, an extension operator is an operator that can be “added on” to an existing

CRN while preserving the CRNs original behavior. This is demonstrated in figure 3.1.



www.manaraa.com

14

N u

(a) Original CRN

N

N̂
u

H(u)

(b) Extended CRN

Figure 3.1: A visual depiction of an extension operator H : C[U ]→ C[V ] applied to a

CRN N to produce the CRN N̂ .

Lemma 3.6. The concentration signal operator H : C[{X}]→ C[{Y }] defined by

H(u)(t)(Y ) =

∫ t

0

u(s)(X)ds (3.2)

for all u ∈ C[{X}] and t ∈ [0,∞), is an extension operator.

Proof. Let H be as given, and let N = (S,R) be a CRN such that X ∈ S and Y 6∈ S.

Let N̂ = (Ŝ, R̂) be the CRN defined by Ŝ = S ∪ {Y } and R̂ = R ∪ {ρ} where ρ is the

reaction X
1−−→ X + Y . Since ρ only uses species in S as catalysts, it has no effect on

the original behavior of N . It follows that N is a closed sub-CRN of N̂ .

Now let x ∈ sol(N), and let x̂0 be an initial state of N̂ such that x̂0(Y ) = 0 and

x̂0(Z) = x(0)(Z) for each Z ∈ S. Then the ICRN (N̂ , x̂0) specifies a unique solution

x̂ ∈ sol(N̂). Since N E N̂ and x(0)(Z) = x̂(0)(Z) for all species Z ∈ S, it follows that

x̂S = x.

It remains to be shown that x̂(t)(Y ) =
∫ t

0
x(s)(X)ds for all t ∈ [0,∞). To show this,

we examine the ODE for Y in N̂ . Since the only reaction affecting Y is ρ, the ODE

corresponding to Y is

y′(t) = x(t).

By integrating both sides of this equation, we obtain

y(t)− y(0) =

∫ t

0

x(s)ds.

The lemma immediately follows by the initial condition, y(0) = 0.
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This lemma demonstrates that it is possible to nondestructively compute the definite

integral of any concentration signal from any CRN by simply adding one species and one

reaction. By iteratively applying different extension operators to a CRN, it is possible to

modularly construct complex concentration signals without affecting any intermediate

functionality.

There are also some powerful concentration signal constructions that are not CRN

extension operators. For example, the following theorem shows that it is possible to

dynamically speed up or slow down the behavior of a CRN by modifying every reaction

of the CRN to include one extra catalyst. This catalyst is then used as a mechanism to

uniformly affect the speed of the CRN computation.

Theorem 3.7 (Time Dilation). If X 6∈ U , then CCRN is closed under the operator

H : C[U ∪ {X}]→ C[U ] defined by

H(u, x)(t) = u

(∫ t

0

x(s)ds

)
(3.3)

for all u ∈ C[U ] and x ∈ C[{X}].

Proof. Assume the hypothesis, and let u ∈ C[U ] and x ∈ C[{X}] be two CRN-computable

functions. It suffices to show that H(u, x) is also CRN-computable.

Let N (1) = (S(1), R(1)) and N (2) = (S(2), R(2)) be CRNs that compute u and x,

respectively, such that S(1) ∩ S(2) = ∅. Let N = (S,R) be a CRN with S = S(1) ∪ S(2)

and R = R̂(1) ∪R(2) where R̂(1) = {ρ̂ | ρ ∈ R(1)} and where each reaction ρ̂ is a copy of ρ

except with X added as a catalyst, i.e.,

r(ρ̂)(X) = p(ρ̂)(X) = 1,

r(ρ̂)(Y ) = p(ρ̂)(Y ) = 0 for all Y ∈ S(2) \ {X},

r(ρ̂)(Y ) = r(ρ)(Y ) for all Y ∈ S(1), and

p(ρ̂)(Y ) = p(ρ)(Y ) for all Y ∈ S(1).

Since the species in S(2) are unaffected by these reactions, it is clear that N (2) EN .
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Let x(1) ∈ sol(N (1)) and x(2) ∈ sol(N (2)) be solutions that compute u and x, respec-

tively, and let x ∈ sol(N) be the solution with x(0)(Y ) = x(1)(0)(Y ) for all Y ∈ S(1) and

x(0)(Z) = x(2)(0)(Z) for each Z ∈ S(2).

It now suffices to show that xU = H(u, x).

Let f : [0,∞)→ [0,∞) be a function defined by f(t) =
∫ t

0
x(s)ds. For each species

Y ∈ S(1), let ŷ : [0,∞) → [0,∞) be the function defined by ŷ(t) = x(1)(f(t))(Y ).

Equation (2.4) and the chain rule tell us that the derivative of each ŷ is

dŷ

dt
=

d

dt

(
x(1)(f(t))(Y )

)
= f ′(t) · F (1)

Y (x(1)(f(t)))

where F
(1)
Y is the deterministic mass action rate function of species Y in N (1). By

equations (2.2) and (2.3) along with the fact that f ′(t) = x(t),

dŷ

dt
= x(t)

∑
ρ∈R(1)

∆ρ(Y ) · ratex(1)(f(t))(ρ)

= x(t)
∑
ρ∈R(1)

∆ρ(Y ) · k(ρ)
∏

Z∈S(1)

x(1)(f(t))(Z)r(ρ)(Z).

Recall that for each Z ∈ S(1), we defined the function ẑ(t) = x(1)(f(t))(Z). Therefore

dŷ

dt
= x(t)

∑
ρ∈R(1)

∆ρ(Y ) · k(ρ)
∏

Z∈S(1)

ẑ(t)r(ρ)(Z). (3.4)

Now, we will compare these ODEs to those of each species Y ∈ S(1) in the CRN N .

Equation (2.4) tells us that for each Y ∈ S(1),

x′(t)(Y ) = FY (x(t)),

where FY is the deterministic mass action function of Y in N , and therefore

x′(t)(Y ) =
∑
ρ∈R

∆ρ(Y ) · ratex(t)(ρ).
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Since each species Y ∈ S(1) is only affected by the reactions in R̂(1) in N , we can rewrite

this ODE as

x′(t)(Y ) =
∑
ρ̂∈R̂(1)

∆ρ̂(Y ) · ratex(t)(ρ̂).

Using equation (2.2), we can expand the reaction rate function to obtain

x′(t)(Y ) =
∑
ρ̂∈R̂(1)

∆ρ̂(Y ) · k(ρ̂)
∏
Z∈S

x(t)(Z)r(ρ̂)(Z).

Since ρ̂ is identical to ρ with an additional catalyst X, we can rewrite this ODE as

x′(t)(Y ) = x(t)(X)
∑
ρ∈R(1)

∆ρ(Y ) · k(ρ)
∏

Z∈S(1)

x(t)(Z)r(ρ)(Z). (3.5)

Now equation (3.5) has identical structure to that of equation (3.4) except the functions

ŷ(t) are replaced with x(t)(Y ) for each Y ∈ S(1). Therefore ŷ(t) = x(t)(Y ) if the initial

conditions are identical.

Since f(0) = 0, it is clear that ŷ(0) = x(1)(0)(Y ) = x(0)(Y ) for each Y ∈ S(1).

Therefore x(t)(Y ) = ŷ(t) = x(1)(f(t))(Y ) for all Y ∈ S(1) and t ∈ [0,∞). This shows that

xU = H(u, x), and therefore CCRN is closed under operator H.

The operation defined in Theorem 3.7 is not an extension operator (because it requires

modifying the original CRN). Nevertheless, it is one of the most useful and robust

operations on concentration signals.

At this point, the signal operations we have shown in Lemma 3.6 and Theorem 3.7

are well behaved. By “well behaved” we mean that these operators do not have any

unintended side effects and operate as expected on all initial states. We will now start

proving closure properties that depend on reactions that are not well behaved on all

possible inputs. An example of such a reaction is demonstrated in the following example.
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Example 3.8. If N = (S,R) is a CRN with S = {X} and R consists of the single

reaction 2X
1/2−−→ 3X, then every solution x ∈ sol(N) has the form

x(t) =
x(0)

1− x(0) · t
. (3.6)

Moreover, dom(x) = [0, 1
x(0)

) if x(0) > 0 and dom(x) = [0,∞) if x(0) = 0.

Proof. Assume the hypothesis. Then the ODE for X is x′(t) = x(t)2

2
. By separation of

variables and integration, it is clear that the solution is x(t) = x(0)
1−x(0)·t . This also implies

that x(t) = 0 for all t ∈ [0,∞) if x(0) = 0. Similarly, if x(0) > 0, it is clear that x(t) is

undefined at time t = 1
x(0)

.

Even though CRNs such as these are unquestionably unrealistic, we will continue

exploring which concentration signals the CRN model can compute using these extensions.

In chapters 6 and 7, we will explore in more detail what CRNs can compute robustly.

We will now prove a theorem that is paramount to proving the remaining closure

properties of CRN-computable signals. The theorem simply shows that it is possible

compute the reciprocal of a one-dimensional concentration signal and is intentionally

stated in a way to be easily referenced in the forthcoming proofs.

Theorem 3.9 (reciprocal theorem). If N = (S,R) is a CRN with X,X ∈ S such that

FX(x) = −x(X)2 · FX(x) (3.7)

for all x ∈ [0,∞)S where FX and FX are the deterministic mass action rate functions of

X and X in N , respectively, and if x ∈ sol(N) such that x(0) = 1
x(0)

, then x(t) = 1
x(t)

for

all t ∈ [0,∞).

Proof. Assume the hypothesis. By equation (3.7), the ODEs of X and X are related by

dx

dt
= −x2dx

dt
.
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By separation of variables and integration, we obtain

−
∫

1

x2dx =

∫
dx+ C

for some C ∈ R. By evaluating the integrals, we see that

1

x
= x+ C.

Since x(0) = 1
x(0)

, it follows that C = 0, and therefore x(t) = 1
x(t)

for all t ∈ [0,∞).

Corollary 3.10. The concentration signal operator H : C[{X}]→ C[{X}] defined by

H(u)(t)(X) =
1

u(t)(X)
(3.8)

for all u ∈ C[{X}] such that u(0)(X) > 0, is an extension operator.

Two things are worth noting about the above theorem and corollary. First, if x(0) = 0,

it is not possible to compute the reciprocal of X because 1
x(0)

is not defined. Second, the

extension described in Corollary 3.10 is not always well behaved on initial states that do

not satisfy x(0) = 1
x(0)

. We demonstrate this with the following example.

Example 3.11. Let N = (S,R) be a CRN where S = {X,X} and R consists of the

reactions X
k−−→ ∅ and 2X +X

k−−→ 3X +X where k > 0. Then the deterministic mass

action functions of X and X are related by

FX(x) = k · x(X)2 · x(X) = −x(X)2 · FX(x)

for all x ∈ [0,∞)S.

By Theorem 3.9, for all x ∈ sol(N) with x(0) = 1
x(0)

, the concentration of X will

be the reciprocal of X for all t ∈ [0,∞). However, if x(0) > 1 and x(0) = 1
x(0)−1

, then

x(t) = 1
x(t)−1

for all t ∈ [0, 1), and x(t) will be undefined at time t = 1.
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The above example shows that the reciprocal of a perfectly harmless reaction X
k−−→ ∅

will blow up in constant time if initialized improperly. In fact, in this example, it will

blow up whenever x(0) > 1
x(0)

.

The rest of the extension operators we show in this chapter depend on the reciprocal

theorem in some way. Therefore, these extensions depend on precise initial conditions

and are not well-behaved if initialized incorrectly. These new extensions are more general

than those of Lemma 3.6 and Theorem 3.7, and to explore their full generality, we define

a notion of a weakly CRN-computable signal. A weakly CRN-computable signal is simply

a function that can be written as a polynomial of CRN-computable concentration signals.

An important feature of weakly CRN-computable signals is that they can be negative.

Our previous definitions do not support negative concentration signals, therefore we

extend those definitions in the following way.

Definition 3.12. A signal is a continuous function w : [0,∞)→ RW where W ⊆ S is a

finite set of species. The set of all continuous signals over the set W is denoted CR[W ].

We have been calling functions u ∈ C[U ] concentration signals. Our reuse of the

terminology signal to refer to functions w ∈ CR[W ] is a natural and intuitive generalization

of the original term.

Definition 3.13. A function P : [0,∞)U → R where U ⊆ S is a finite set a species is

called a polynomial map if there are constants k ∈ N, c0, . . . , ck−1 ∈ R, and ni,Y ∈ N for

each 0 ≤ i < k and Y ∈ U such that

P (x) =
k−1∑
i=0

(
ci
∏
Y ∈U

x(Y )ni,Y

)
(3.9)

for all x ∈ [0,∞)U .

Definition 3.14. A signal w : CR[W ] is called weakly CRN-computable if there exists a

CRN N = (S,R), a polynomial map PY : [0,∞)S → R for each Y ∈ W , and a solution
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x ∈ sol(N) such that w(t)(Y ) = PY (x(t)) for all t ∈ [0,∞) and for all Y ∈ W . The set

of all weakly CRN-computable signals is denoted WCRN.

Observation 3.15. Every CRN-computable signal is weakly CRN-computable.

Since weakly CRN-computable signals are allowed to be negative, it is easier to prove

closure properties over the set WCRN. However, our primary interest is what CRNs

are capable of computing in the stronger sense. We will now prove that if a weakly

CRN-computable signal is strictly positive at time zero, then it is also CRN-computable.

In order to prove this result, we first need to prove a few closure properties of WCRN

and introduce a new method of extending CRNs.

Recall that an extension operator makes it possible to extend a CRN to compute a

concentration signal in terms of another concentration signal. We now show that it is

possible construct specific deterministic mass action rate functions with simple extensions.

Definition 3.16. A function of the form GX : [0,∞)U∪{X} → R where X ∈ S and U ⊆ S

is finite is called a rate function.

A rate function GX is called valid if for all CRNs N = (S,R) with U ⊆ S and X 6∈ S,

there exists a CRN N̂ = (Ŝ, R̂) such that NEN̂ , Ŝ = S∪{X}, and F̂X(x̂) = GX(x̂U∪{X})

for all x̂ ∈ [0,∞)Ŝ where F̂X is the deterministic mass action function of X in N̂ .

A rate function PX : [0,∞)U∪{X} → R is polynomial if it is a polynomial map.

Lemma 3.17. If PX : [0,∞)U∪{X} → R and QX : [0,∞)U∪{X} → R are polynomial rate

functions with strictly positive coefficients and GX : [0,∞)U∪{X} → R is a rate function

defined by

GX(x) = PX(x)− x(X) ·QX(x) (3.10)

for all x ∈ [0,∞)U∪{X}, then GX is valid.
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Proof. Assume the hypothesis, and let N = (S,R) be a CRN such that U ⊆ S and

X 6∈ S. Since PX and QX are polynomial rate functions, GX can be written as

GX(x) =
k−1∑
i=0

ci ∏
Y ∈U∪{X}

x(Y )ni,Y

− x(X)
l−1∑
i=0

di ∏
Y ∈U∪{X}

x(Y )mi,Y


for all x ∈ [0,∞)U∪{X}where k, l ∈ N, c0, . . . , ck−1 ∈ (0, 1), d0, . . . , dl−1 ∈ (0, 1), ni,Y ∈ N

for all 0 ≤ i < k and for all Y ∈ U ∪ {X}, and mi,Y ∈ N for all 0 ≤ i < l and for all

Y ∈ U ∪ {X}.

Now let N̂ = (Ŝ, R̂) be a CRN such that Ŝ = S and R̂ = R ∪ R̂+ ∪ R̂− where

R̂+ = {α0, . . . , αk−1} and R̂− = {β0, . . . , βl−1}, and for each 0 ≤ i < k, the reaction αi is

defined by k(αi) = ci and

r(αi)(X) = p(αi)(X)− 1 = ni,X ,

r(αi)(Y ) = p(αi)(Y ) = ni,Y for all Y ∈ U,

r(αi)(Z) = p(αi)(Z) = 0 for all Z ∈ Ŝ \ (U ∪ {X}) ,

and for each 0 ≤ j < l, the reaction βj is defined by k(βj) = dj and

r(βj)(X) = p(βj)(X) + 1 = mj,X + 1,

r(βj)(Y ) = p(βj)(Y ) = mj,Y for all Y ∈ U,

r(βj)(Z) = p(βj)(Z) = 0 for all Z ∈ Ŝ \ (U ∪ {X}) .

Intuitively, each reaction αi corresponds exactly to the ith term of PX , and each reaction

βj corresponds to the jth term of QX (and also takes into account the extra x(X)). Since

each of the reactions of R̂+ and R̂− only use species of S as catalysts, it is clear that

N E N̂ . It is also easy to see that the deterministic mass action function for X in N̂ is

F̂X(x̂) = PX(x̂U∪{X})− x̂(X) ·QX(x̂U∪{X}) = GX(x̂U∪{X})

for all x̂ ∈ [0,∞)Ŝ.
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Lemma 3.17 shows it is possible to build a CRN extension such that a new species X

has a polynomial ODE like that of equation (3.10).

We now prove a few simple closure properties of WCRN that will also help us in the

proof of the main theorem.

Definition 3.18. A signal operator is a function of the form H : CR[U ] → CR[V ]

where U, V ⊆ S are finite and U ∩ V = ∅. We say that the set WCRN of weakly

CRN-computable signals is closed under operator H if for all u ∈ CR[U ])

u ∈WCRN =⇒ H(u) ∈WCRN.

Observation 3.19. The set WCRN is closed under addition and multiplication. More

formally, it is closed under the operators H1, H2 : CR[{X, Y }]→ CR[{Z}] defined by

H1(u)(t)(Z) = u(t)(X) + u(t)(Y )

H2(u)(t)(Z) = u(t)(X) · u(t)(Y )

for all u ∈ CR[{X, Y }] and t ∈ [0,∞).

Proof. This follows from the fact that adding or multiplying two polynomials produces

another polynomial.

Lemma 3.20. The set WCRN is closed under differentiation. More formally, it is closed

under the operator H : CR[{X}]→ CR[{X̂}] defined by

H(t)(u)(X̂) = u′(t)(X)

for all u ∈ CR[{X}] and t ∈ [0,∞).

Proof. Since deterministic mass action rate functions are polynomials, the derivative of

the concentration of each species is a polynomial. This implies that the derivative of a

polynomial map is also a polynomial.
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The closure properties from Observation 3.19 and Lemma 3.20 are rather trivial because

weakly CRN-computable signals are polynomials. In fact, these closure properties do not

even require an extension because a single CRN can weakly compute any polynomial

combination of its species concentrations.

We now prove the theorem that weakly CRN-computable signals can also be com-

putable if they are strictly positive initially.

Theorem 3.21. If w ∈ CR[W ] is weakly CRN-computable, b ∈ (0,∞], and w(t)(Y ) > 0

for all t ∈ [0, b) and Y ∈ W , then w is CRN-computable and is defined for all t ∈ [0, b).

Proof. Assume the hypothesis. Let N = (S,R) be a CRN that weakly computes w where

S ∩W = ∅, and let the polynomial maps PY : [0,∞)S → R for each Y ∈ W be the

witnesses that N weakly computes w. Since the derivative of a polynomial map is also a

polynomial map, let P̂Y : [0,∞)S → R be the derivative of PY for each Y ∈ W .

By Lemma 3.17, it is possible to extend the CRN N = (S,R) to a CRN N̂ = (Ŝ, R̂)

such that N E N̂ , Ŝ = S ∪ {Y, Y | Y ∈ W} and for each Y ∈ W the deterministic mass

action functions F̂Y and F̂Y in N̂ are defined by

F̂Y (x̂) = x̂(Y )x̂(Y )P̂Y (x̂S) (3.11)

F̂Y (x̂) = −x̂(Y )2F̂Y (x̂). (3.12)

This is possible because the rate functions from equations (3.11) and (3.12) are of the

same form of equation (3.10) and therefore valid.

Equation (3.12) along with Theorem 3.9 tell us that for each Y ∈ W , it is possible for

Y to be exactly the reciprocal of Y . By the hypothesis, we know that w(t)(Y ) > 0 for

all t ∈ [0, b) and Y ∈ W , therefore the reciprocal of w(0)(Y ) is well-defined.

Let x ∈ sol(N) be a solution that weakly computes w, i.e., w(t)(Y ) = PY (x(t))

for all t ∈ [0,∞) and Y ∈ W . Now let x̂ ∈ sol(N̂) be the solution defined by x̂S = x

and x̂(0)(Y ) = 1
x̂(0)(Y )

= w(0)(Y ) for each Y ∈ W . Then by the reciprocal theorem,
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x̂(t)(Y ) = 1
x̂(t)(Y )

for all t ∈ [0,∞) and Y ∈ W . This means that every species Y ∈ W in

N̂ obeys the ODE

x̂′(t)(Y ) = P̂Y (x̂S(t)).

Since P̂Y is the derivative of PY and x̂(0)(Y ) = w(0)(Y ) for each Y ∈ W , it is clear

that x̂(t)(Y ) = w(t)(Y ) for all t ∈ [0, b) because w(t)(Y ) > 0 for all t ∈ [0, b). Thus

x̂W (t) = w(t) for all t ∈ [0, b), and thus N̂ computes w over the domain [0, b).

The above theorem shows that all the closure properties we prove on the set WCRN

immediately applies to the set CCRN. This is a surprising result since any weakly

CRN-computable signal that is initially strictly positive but eventually becomes negative

is still CRN-computable. It is important to notice that if the weakly CRN-computable

signal has a component Y that becomes zero at time b, then the CRN constructed in

Theorem 3.21 that computes it has a species Y that is undefined at time b. Therefore,

although the signal is computable, it is only defined over the interval [0, b).

The rest of this section is devoted to proving more sophisticated closure properties on

the set WCRN. We first prove that WCRN is closed under integration. However, in

order to prove this, we need a generalized version of Lemma 3.6 which is shown below.

Observation 3.22. The concentration signal operator H : C[U ]→ C[{X}] defined by

H(u)(t)(X) = k

∫ t

0

∏
Y ∈U

u(s)(Y )nY ds (3.13)

where k ∈ (0,∞) and nY ∈ N for each Y ∈ U , is an extension operator.

Proof. This proof is identical to that of Lemma 3.6 except the new reaction ρ changes.

In particular, ρ is defined by k(ρ) = k, r(ρ)(Y ) = p(ρ)(Y ) = nY for each Y ∈ U , and

p(ρ)(X) = r(ρ)(X) + 1 = 1.
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Lemma 3.23. The set WCRN is closed under integration, i.e., for all C ∈ R, it is

closed under the operator H : CR[{X}]→ CR[{X̂}] defined by

H(t)(u)(X̂) =

∫
u(t)(X)dt+ C

for all u ∈ CR[{X}] and t ∈ [0,∞).

Proof. Let H be as given for some C ∈ R, and let u ∈ CR[{X}] be a weakly CRN-

computable signal. Then there is a CRN N = (S,R), a polynomial map PX : [0,∞)S → R,

and a solution x ∈ sol(N) such that u(t)(X) = PX(x(t)) for all t ∈ [0,∞). Since PX is

a polynomial map, there exist constants k ∈ N, c0, . . . , ck−1 ∈ R, and ni,Y ∈ N for each

0 ≤ i < k and Y ∈ S such that

PX(x(t)) =
k−1∑
i=0

(
ci
∏
Y ∈S

x(t)(Y )ni,Y

)

for all t ∈ [0,∞).

Observation 3.22 tells us that the integral of every term of PX is CRN-computable

via an extension. Let N̂ = (Ŝ, R̂) be a CRN such that N E N̂ with additional species

T0, . . . , Tk−1 ∈ Ŝ where each Ti is added to N̂ according to Observation 3.22 to compute

the integral of
∏

Y ∈S x(t)(Y )ni,Y . Then there exists a solution x̂ ∈ sol(N̂) such that

x̂S = x and

x̂(t)(Ti) =

∫ t

0

∏
Y ∈S

x(s)(Y )ni,Y ds

for all 0 ≤ i < k and t ∈ [0,∞). We note that for each 0 ≤ i < k we can rewrite this

integral as

x̂(t)(Ti) =

∫ ∏
Y ∈S

x(t)(Y )ni,Y dt+ Ci

for some Ci ∈ R.



www.manaraa.com

27

We now define the polynomial map PX̂ : [0,∞)Ŝ → R by

PX̂(x̃) =
k−1∑
i=0

cix̃(Ti) + C∗

for all x̃ ∈ [0,∞)Ŝ where the constant C∗ ∈ R is defined by C∗ = C −
∑k−1

i=0 ci · Ci. It

follows that for all t ∈ [0,∞),

PX̂(x̂(t)) =
k−1∑
i=0

∫
ci
∏
Y ∈S

x̂(t)(Y )ni,Y dt+ C

and therefore H(u)(t)(X̂) = PX̂(x̂(t)) for all t ∈ [0,∞). Thus the CRN N̂ and solution

x̂ weakly CRN-compute the signal H(u).

The rest of the closure properties we prove follow a similar pattern, therefore we

grouped them in the following theorem. We also include the closure properties we have

already proven so as to have a single place to look up the closure properties.

Theorem 3.24. The set WCRN of weakly CRN-computable signals is closed under the

following operators.

Addition. H : CR[{X, Y }]→ CR[{Z}] defined by

H(w)(t)(Z) = w(t)(X) + w(t)(Y ). (3.14)

Multiplication. H : CR[{X, Y }]→ CR[{Z}] defined by

H(w)(t)(Z) = w(t)(X) ·w(t)(Y ). (3.15)

Differentiation. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) = w′(t)(X). (3.16)
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Integration. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) =

∫
w(t)(X)dt+ C (3.17)

for some C ∈ R.

Reciprocal. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) =
1

w(t)(X)
(3.18)

where w(0)(X) 6= 0.

Exponentiation. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) = ew(t)(X). (3.19)

Logarithm. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) = log
(
w(t)(X)

)
(3.20)

where w(0)(X) > 0.

Power. H : CR[{X, Y }]→ CR[{Z}] defined by

H(w)(t)(Z) = w(t)(X)w(t)(Y ) (3.21)

where w(0)(X) 6= 0 or w(0)(Y ) ≥ 0.

Sine. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) = sin
(
w(t)(X)

)
. (3.22)
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Arctangent. H : CR[{X}]→ CR[{Y }] defined by

H(w)(t)(Y ) = arctan
(
w(t)(X)

)
. (3.23)

Proof. The first four closure properties have already been shown in Observation 3.19,

Lemma 3.20, and Lemma 3.23; closure under reciprocals is obvious from Theorems 3.9

and 3.21; and closure under logarithms and arctangent are natural consequences of

closure under addition, multiplication, reciprocals, and integration. The rest of the

closure properties require a little more work, and each property depends on the reciprocal

theorem in some way.

To show that WCRN is closed under exponentiation, let H be defined as given in

equation (3.19), and let w ∈ CR[{X}] be weakly CRN-computable by the CRN N = (S,R)

and polynomial map PX : [0,∞)S → R. Now let P̂X : [0,∞)S → R be the derivative of

PX defined by

P̂X(x(t)) =
d

dt
PX(x(t))

for all x ∈ C[S] and t ∈ [0,∞). As we showed earlier, P̂X is also a polynomial map.

Let N̂ = (Ŝ, R̂) be a CRN such that N E N̂ , Ŝ = S ∪ {Y, Y }, and the deterministic

mass action rate functions F̂Y and F̂Y in N̂ are defined by

F̂Y (x̂) = x̂(Y )2x̂(Y )P̂ (x̂S)

F̂Y (x̂) = −x̂(Y )2F̂ (x̂).

This construction is possible because F̂Y and F̂Y are valid rate functions.

Now let x ∈ sol(N) be a solution that computes w, and let x̂ ∈ sol(N̂) such that

x̂S = x and x̂(0)(Y ) = 1
x̂(0)(Y )

= ew(0)(X). Then by the reciprocal theorem, x̂(t)(Y ) =
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1
x̂(t)(Y )

for all t ∈ [0,∞), therefore the derivative of x̂(t)(Y ) is

x̂′(t)(Y ) = x̂(t)(Y )P̂X(x̂S(t)) = x̂(t)(Y )w′(t)(X).

By separation of variables and integration, we obtain

log(x̂(t)(Y )) = w(t)(X) + C

for some C ∈ R. Therefore x̂(t)(Y ) = ew(t)(X)+C , and by the initial condition, we see that

C = 0. This shows that x̂(t)(Y ) = H(w)(t)(Y ), and concludes the proof that WCRN is

closed under exponentiation.

Closure under powers is a consequence of closure under exponentiation, multiplication,

and logarithms. This can bee seen from the equality f(t)g(t) = eg(t) log(f(t)) for any two

continuous functions f and g.

It remains to be shown that WCRN is closed under the sine operator. Let H be

defined as given in equation (3.24), let w ∈ CR[{X}] be weakly CRN-computable by the

CRN N = (S,R) and polynomial map PX : [0,∞)S → R, and let P̂X : [0,∞)S → R be

the derivative of PX as done before.

Let N̂ = (Ŝ, R̂) be a CRN such that N E N̂ , Ŝ = S ∪ {Y, Y , Z, Z}, and where the

deterministic mass action rate functions F̂Y , F̂Y , F̂Z , and F̂Z in N̂ are defined by

F̂Y (x̂) = x̂(Y )x̂(Y )
(
P̂X(x̂S)

(
x̂(Z)− 2

))
F̂Y (x̂) = −x̂(Y )2F̂Y (x̂)

F̂Z(x̂) = x̂(Z)x̂(Z)
(
P̂X(x̂S)

(
x̂(Y )− 2

))
F̂Z(x̂) = −x̂(Z)2F̂Z(x̂)

This construction is possible because F̂Y , F̂Y , F̂Z , and F̂Z are valid rate functions.
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Now let x ∈ sol(N) be a solution that computes w, and let x̂ ∈ sol(N̂) such that

x̂S = x and

x̂(0)(Y ) =
1

x̂(0)(Y )
= sin

(
w(0)(X)

)
+ 2

x̂(0)(Z) =
1

x̂(0)(Z)
= cos

(
w(0)(X)

)
+ 2.

Then by the reciprocal theorem, x̂(t)(Y ) = 1
x̂(t)(Y )

and x̂(t)(Z) = 1
x̂(t)(Z)

for all t ∈ [0,∞).

Therefore, the derivatives of x̂(t)(Y ) and x̂(t)(Z) can be written a more intuitive way as

dy

dt
=
dx

dt
(z − 2), and

dz

dt
= −dx

dt
(y − 2),

respectively. These pair of ODEs are easily solvable with solutions

x̂(t)(Y ) = sin
(
w(t)(X)

)
+ 2

x̂(t)(Z) = cos
(
w(t)(X)

)
+ 2

for all t ∈ [0,∞). Therefore H(w)(t)(X) = x̂(t)(Y )− 2.

Since x̂(t)(Y )− 2 can be written in terms of a polynomial map, we have shown that

WCRN is indeed closed under the sine operator.



www.manaraa.com

32

CHAPTER 4. SIGNAL RESTORATION ALGORTIHMS∗

In this chapter we present and analyze two signal restoration algorithms used in CRNs

under deterministic mass action semantics. Signal restoration concerns the prevention of

memory corruption caused by noise and other factors present in the system. In CRNs, a

bit of memory can be stored by the contrast of high and low concentrations of a species

(similar to how circuits use high and low voltages). The two CRN signal restoration

algorithms investigated here aim to prevent high concentrations from becoming low, and

vice versa, even in the presence of adversarial reactions.

The two algorithms are presented in sections 4.1 and 4.2. The first algorithm consists

of two termolecular reactions (reactions with three reactants) and is the simpler of the two

algorithms [40, 37]. The second signal restoration algorithm consists of four bimolecular

reactions and was developed in 2008 by Angluin, Aspnes, and Eisenstat for population

protocols [23, 3]. For both algorithms, we introduce new reactions to simulate the presence

of noise from other reactions and analyze the behavior and runtime of the algorithms.

4.1 Termolecular Signal Restoration

The termolecular signal restoration algorithm presented here has the structure

2X + Y
1−−→ 3X (4.1)

2Y +X
1−−→ 3Y. (4.2)

∗ An earlier version of most of the material in this chapter will appear in [39].
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Figure 4.1: Plot of the solution generated by reactions (4.1) and (4.2) and the initial
condition x(0) = 0.55 and y(0) = 0.45

Intuitively, the species X and Y are competing for total majority by converting the oppos-

ing species to itself. The algorithm is designed so that when the system is initialized with

some concentrations of X and Y , the species with the initial majority will asymptotically

annihilate the other. This is demonstrated in figure 4.1.

If N = (S,R) is the CRN consisting of the reactions (4.1) and (4.2) and x ∈ sol(N),

then using equation (2.4) we see that the system consists of the two ODEs

x′(t)(X) = x(t)(X)2x(t)(Y )− x(t)(X)x(t)(Y )2 (4.3)

x′(t)(Y ) = x(t)(Y )2x(t)(X)− x(t)(Y )x(t)(X)2, (4.4)

or more simply

dx

dt
= x2y − xy2 (4.5)

dy

dt
= y2x− yx2. (4.6)
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This system is simple enough that it can be solved explicitly. Since dx
dt

+ dy
dt

= 0, if

x(0) + y(0) = 1 then x(t) + y(t) = 1 for all t ∈ [0,∞). Therefore equation (4.5) can be

rewritten

dx

dt
= x2(1− x)− x(1− x)2. (4.7)

By separation of variables and integration, it is easy to show that the solution x can be

written analytically as

x(t) =



1
2

(1− u) , if x(0) < 1
2

1
2
, if x(0) = 1

2

1
2

(1 + u) , if x(0) > 1
2

(4.8)

y(t) = 1− x(t), (4.9)

where u = 1√
1+C·e−t and C = 4x(0)y(0)

(x(0)−y(0))2
.

By inspection of (4.8) and (4.9), we can see that the CRN has the behavior we

expect. The species with the majority initial concentration eliminates the minority at an

exponential rate.

The drawback to this solution is that it depends on the following assumptions.

1. The rate constants of the reactions are exactly equal.

2. The initial concentrations sum exactly to 1.

3. No other reactions interfere with the system.

In practice, we do not have infinitely precise control over rate constants and initial

conditions. Furthermore, the algorithm is most useful in systems with other reactions

affecting X and Y . We now specify a more general system that avoids these dependencies.
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Construction 4.1. Given the real valued constants a > 0, b > 0, and c > 0, let

N = (S,R) be a CRN with S = {X, Y } and R consisting of the reactions

2X + Y
a−−→ 3X (4.10)

2Y +X
b−−→ 3Y (4.11)

X
c−−→ Y. (4.12)

This CRN has unrelated rate constants and one additional reaction (4.12) that models

interference that biases the system toward Y . Without this extra reaction, our analysis

would only be modeling the system in isolation. We do not include a reaction Y → X

because of the symmetry of the species X and Y . Therefore this system captures the

worst case scenario for the species X.

Theorem 4.2. If a > 0, b > 0, and c > 0 are real valued constants, N = (S,R) is

constructed according to Construction 4.1, x0 ∈ [0,∞)S is an initial state of N , and

c < p2a2

4(a+b)
where p = x0(X) + x0(Y ), then the initial value problem generated by the

ICRN (N,x0) has exactly three equilibrium points x̂0, x̂1, and x̂2 defined by

x̂0(X) = 0, x̂0(Y ) = p,

x̂1(X) = E1, x̂1(Y ) = p− E1,

x̂2(X) = E2, x̂2(Y ) = p− E2,

where E1 and E2 are the real valued constants

E1 = p

(
b

a+ b

)
+ A, E2 = p− A,

and where A = p
2

(
a
a+b

) (
1−
√

1− c∗
)

and c∗ = c · 4(a+b)
p2a2

. Moreover, x̂0 and x̂2 are stable,

and x̂1 is unstable.
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Proof. Assume the hypothesis. Then the ODEs for the species X and Y can be derived

from the reactions (4.10)-(4.12) and are

dx

dt
= ax2y − bxy2 − cx, (4.13)

dy

dt
= by2x− ayx2 + cx, (4.14)

respectively. Note that dx
dt

+ dy
dt

= 0, so the concentrations x(t) and y(t) differ by a

constant. Since p = x(0) + y(0), it is easy to show that for all t ∈ [0,∞)

y(t) = p− x(t). (4.15)

It immediately follows from (4.13) that

dx

dt
= ax2(p− x)− bx(p− x)2 − cx. (4.16)

The equilibrium points of (N,x0) can now be derived from the roots of the right-hand side

of (4.16). It is routine to verify that these roots are 0, E1, and E2, and since c < p2a2

4(a+b)

these roots are distinct and real. It follows from (4.15) that x̂0, x̂1, and x̂2 are the

equilibrium points of (N,x0).

We now examine the stability of the points. It is well known that the stability of an

equilibrium point can be determined by examining the eigenvalues of the Jacobian matrix

evaluated at that point [28, 64]. A point is stable if each eigenvalue has a negative real

part, and it is unstable if each eigenvalue has a positive real part.

Since (4.16) is 1-dimensional, there is only a single eigenvalue for each equilibrium

point. It is not difficult to show that the eigenvalues for the points x̂0, x̂1, x̂2 are

λ0 = (a+ b)(−E1E2),

λ1 = (a+ b)E1(E2 − E1),

λ2 = (a+ b)E2(E1 − E2),
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respectively. Since a > 0, b > 0, and E2 > E1 > 0, we see that λ0 and λ2 are negative and

λ1 is positive. It immediately follows that x̂0 and x̂2 are stable and x̂1 is unstable.

The above theorem shows that the CRN is indeed bistable if c is sufficiently small.

We also see that E1 is the deciding threshold of the system, i.e., if x(0) > E1 then x(t)

converges to E2, and if x(0) < E1 then x(t) converges to 0.

Observation 4.3. In Theorem 4.2,

E1 < p

(
b

a+ b

)
+

2c

pa
, and E2 > p− 2c

pa
.

Proof. This follows immediately from the fact that

A <
p

2

(
a

a+ b

)
(1− (1− c∗)) =

2c

pa
.

Theorem 4.4. Under the assumptions of Theorem 4.2, if x1, x2, and t are constants

such that t ≥ 0 and E1 < x1 < x2 < E2, with x(0) = x1 and x(t) = x2, then

t =
1

ap
√

1− c∗

(
1

E2

log u+
1

E1

log v

)
, (4.17)

where u = x2(E2−x1)
x1(E2−x2)

and v = x1(x2−E1)
x2(x1−E1)

.

Proof. Assume the hypothesis. It is not difficult to show that the ODE (4.16) of x(t) can

be rewritten

dx

dt
= (a+ b)x(x− E1)(E2 − x). (4.18)

By separation of variables and integration, we have

t∫
0

dt =
1

a+ b

x2∫
x1

1

x(x− E1)(E2 − x)
dx,
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whence

t =
1

a+ b

(
1

E1E2(E2 − E1)

)
log
(
uE1vE2

)
.

The theorem immediately follows from the fact that E2 − E1 = ap
a+b

√
1− c∗.

The above theorem gives the exact time required to move from an inital concentration

x(0) > E1 to a concentration closer to the equilibrium point E2. It is useful to note

that the only components in equation (4.17) that are not bounded by a constant are

1
x1−E1

and 1
E2−x2 . Therefore it is clear that the concentration of X converges to its stable

equilibrium in logarithmic time.

Corollary 4.5. Under the hypothesis of Theorem 4.4,

t <
a+ b

abp2(1− c∗)
log u, (4.19)

where u = (x2−E1)(E2−x1)
(x1−E1)(E2−x2)

.

Proof. Since E1 < E2, Theorem 4.4 tells us that

t <
1

apE1

√
1− c∗

log u. (4.20)

Since c∗ ∈ (0, 1), we have 1− c∗ <
√

1− c∗ and

E1 −
bp

a+ b
= A >

ap

2(a+ b)
> 0,

whence

1

apE1

√
1− c∗

<
a+ b

abp2(1− c∗)
. (4.21)

The corollary follows immediately from (4.20) and (4.21).
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4.2 Bimolecular Signal Restoration

The bimolecular signal restoration algorithm we present here was originally given by

Angluin et al. in [5] as an approximate majority algorithm for population protocols. In

the context of CRNs, the algorithm consists of the four reactions

X + Z
1−−→ 2X (4.22)

X + Y
1−−→ X + Z (4.23)

Y + Z
1−−→ 2Y (4.24)

X + Y
1−−→ Y + Z. (4.25)

Again, the species X and Y are opposed to one another and are competing for total

majority. The additional species Z is intuitively a neutral species that acts as a buffer

between X and Y . Angluin et al. proved that this algorithm effeciently computes

approximate majority in the context of population protocols, and here we prove that

it can be effeciently used for signal restoration in deterministic CRNs. Figure 4.2

demonstrates the behavior of the algorithm.

The CRN N = (S,R) consisting of reactions (4.22)-(4.25) gives the system of ODEs

dx

dt
= xz − xy (4.26)

dy

dt
= yz − xy (4.27)

dz

dt
= 2xy − xz − xy. (4.28)

This system is already considerably more complex than the original termolecular system in

section 4.1, and a solution cannot be trivially found. The task becomes especially difficult

with arbitrary rate constants and interference from other reactions. However, if the rate

constants meet a few constraints, the behavior of this algorithm is extremely similar to
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Figure 4.2: Plot of the solution generated by reactions (4.22)-(4.25) and the initial
condition x(0) = 0.55, y(0) = 0.45, and z(0) = 0

that of the termolecular algorithm from section 4.1. We leverage this relationship in the

fully general proof.

Construction 4.6. Given the strictly positive, real valued constants k1, . . . , k6, let

N = (S,R) be a CRN with S = {X, Y } and R consisting of the reactions

X + Z
k1−−→ 2X (4.29)

X + Y
k2−−→ X + Z (4.30)

Y + Z
k3−−→ 2Y (4.31)

X + Y
k4−−→ Y + Z (4.32)

Z
k5−−→ Y (4.33)

X
k6−−→ Z. (4.34)

This fully generalized CRN contains the new reactions (4.33) and (4.34). These

reactions serve the same purpose of representing outside interference from other reactions
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in the system. The new reactions still bias the algorithm in favor of Y , but do so in

two steps instead of one. Rather than X molecules being converted immediately into Y

molecules, they are converted to Z molecules first.

Before we analyze this CRN in its full generality, we assume that the rate constants

have the following relationships. For a > 0, b > 0, and c > 0, the rate constants k1, . . . , k6

are related by

a = k1 =
k2

2
(4.35)

b = k3 =
k4

2
(4.36)

c = k5 =
k6

2
. (4.37)

If these relationships are satisfied, the system of ODEs for N = (S,R) from Construc-

tion 4.6 are

dx

dt
= axz − 2bxy − 2cx (4.38)

dy

dt
= byz − 2axy + cz (4.39)

dz

dt
= 2axy + 2bxy − axz − byz + 2cx− cz. (4.40)

Note that dx
dt

+ dy
dt

+ dz
dt

= 0, so the solutions to x(t), y(t), and z(t) differ only by a constant.

If p = x(0) + y(0) + z(0), then it is clear that for all t ∈ [0,∞)

z(t) = p− x(t)− y(t). (4.41)

To help us analyze a system of this complexity, we introduce the following four variables.

Let x(t), y(t), v(t), and w(t) be the functions defined by

x(t) =
√
x(t), (4.42)

y(t) =
√
y(t), (4.43)

v(t) = 2x(t)y(t)− z(t), (4.44)

w(t) = x(t) + y(t). (4.45)
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Lemma 4.7. The ODEs of x, y, v, and w are

dx

dt
= xy

(
ax− by − c

y

)
− v

2
ax (4.46)

dy

dt
= −xy

(
ax− by − c

y

)
− v

2

(
by +

c

y

)
(4.47)

dv

dt
= −v(x+ y)

(
ax+ by +

c

y

)
(4.48)

dw

dt
= −v

2

(
ax+ by +

c

y

)
. (4.49)

Proof. Since x =
√
x, its derivative is

dx

dt
=

1

2x
· dx
dt
,

and from (4.38) we obtain

dx

dt
=
a

2
xz − bxy2 − cx.

Since v = 2xy − z, it follows that

dx

dt
=
ax

2
(2xy − v)− bxy2 − cx,

and therefore (4.46) holds. By symmetry, (4.47) also holds.

Since v = 2xy − z, its derivative is

dv

dt
= 2

(
y
dx

dt
+ x

dy

dt

)
− dz

dt
.

By substituting (4.40), (4.46), (4.44), and (4.47) into the above equation, we obtain

(4.48).

Finally, since w = x+ y, its derivative is

dw

dt
=
dx

dt
+
dy

dt
,

which clearly simplifies to (4.49) from (4.46) and (4.47).
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Lemma 4.8. If α = min{a, b} and v̂ is the function

v̂(t) =
p · v(0)

(p+ v(0))eαpt − v(0)
, (4.50)

then for all t ∈ [0,∞),

v(t) ≥ v̂(t), if v(0) < 0 (4.51)

v(t) ≤ v̂(t), if v(0) > 0 (4.52)

v(t) = 0, if v(0) = 0. (4.53)

Proof. Assume the hypothesis. By (4.48), we see that if v(t) = 0 then dv
dt

= 0. It follows

that (4.53) holds.

If v(0) < 0, then

dv

dt
≥ −v(x+ y)(ax+ by) ≥ −vα(x+ y)2

Since p = x2 + y2 + z and v = 2xy − z,

(x+ y)2 = x2 + y2 + 2xy = p− z + 2xy = p+ v,

and therefore

dv

dt
≥ −vα(p+ v).

This ODE can be trivially solved with separation of variables and has solution v̂(t).

Therefore v(t) ≥ v̂(t) for all t ∈ [0,∞), so (4.51) holds.

Similarly, if v(t) > 0, then

dv

dt
≤ −vα(p+ v),

and so (4.52) holds.
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Corollary 4.9. The limits of v(t) and w(t) are

lim
t→∞

v(t) = 0 (4.54)

lim
t→∞

w(t) =
√
p. (4.55)

Theorem 4.10. If a > 0, b > 0, and c > 0 are real valued constants, N = (S,R) is

constructed according to Construction 4.6 such that constraints (4.35)-(4.37) are satisfied,

x0 ∈ [0,∞)S is an initial state, and c < pa2

4(a+b)
where p = x0(X) + x0(Y ) + x0(Z), then

the IVP generated by (N,x0) has the equilibrium points x̂0, x̂1, and x̂2 defined by

x̂0(X) = 0, x̂0(Y ) = p, x̂0(Z) = 0,

x̂1(X) = E2
1 , x̂1(Y ) = (

√
p− E1)2, x̂1(Z) = p− x̂i(X)− x̂i(Y ),

x̂2(X) = E2
2 , x̂2(Y ) = (

√
p− E2)2, x̂2(Z) = p− x̂i(X)− x̂i(Y ),

where E1 and E2 are real valued constants defined by

E1 =
√
p

(
b

a+ b

)
+ A, E2 =

√
p− A,

and where A =
√
p

2

(
a
a+b

) (
1−
√

1− c∗
)
, and c∗ = c · 4(a+b)

pa2
. Moreover, x̂0 and x̂2 are

stable, and x̂1 is a saddle node.

Proof. Assume the hypothesis. We prove the theorem using the variables x(t) and w(t).

By Lemma 4.7 and the fact that v = w2 − p, the ODEs for x and w can be written as

dx

dt
= ax2(w − x)− bx(w − x)2 − cx− a

2
x(w2 − p)x (4.56)

dw

dt
=
p− w2

2

(
ax+ b(w − x) +

c

w − x

)
, (4.57)
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respectively. Corollary 4.9 tells us that all equilibrium points are states in which w =
√
p.

Therefore we need only find the values for x by finding the roots of the right-hand side of

dx

dt
= ax2(

√
p− x)− bx(

√
p− x)2y − cx. (4.58)

The ODE (4.46) is identical in structure to (4.16), and it follows that these roots are

0, E1, and E2. Since x = x2, we have x̂0(X) = 0, x̂1(X) = E2
1 , and x̂2(X) = E2

2 .

Similarly, since y = w−x and y = y2, it follows that x̂0(Y ) = p, x̂1(Y ) = (
√
p−E1)2, and

x̂2(Y ) = (
√
p−E2)2. Finally, since z = p−x−y, it follows that x̂i(Z) = p− x̂i(X)− x̂i(Y )

for 0 ≤ i ≤ 2.

What remains to be shown is the stability of the three points. Using the ODEs (4.56)

and (4.49), it is routine to show that the two eigenvalues of the Jacobian matrix evaluated

at x̂0 are λ1 = λ2 = −c− bp. Since both are negative, it follows that x̂0 is exponentially

stable.

Similarly, the eigenvalues at x̂1 are

λ3 =
a
√
p

2(a+ b)

√
1− c∗

(
a(1−

√
1− c∗) + 2b

)
,

λ4 = −
a
√
p

a+ b

(
a(1−

√
1− c∗) + 2b

)
,

and since 0 ≤
√

1− c∗ < 1, we know that λ3 > 0 and λ4 < 0. Therefore x̂1 is a saddle

node.

Finally, the eigenvalues of x̂2 are

λ5 = − ap

2(a+ b)

√
1− c∗

(
a(1 +

√
1− c∗) + 2b

)
,

λ6 = − ap

a+ b

(
a(1−

√
1 + c∗) + 2b

)
,

which are both clearly negative, so x̂2 is exponentially stable.
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The above theorem not only demonstrates that the bimolecular algorithm has bistable

behavior but that its behavior is closely related to the termolecular algorithm from

section 4.1. In fact, if the CRN is initialized such that z(0) = 2
√
x(0)y(0), then the

solutions have a precise relationship.

From the theorem it is also clear that if x(0) > E2
1 and y(0) < (

√
p− E1)2, then with

certainty the system converges to the equilibrium point x̂2.

We conclude this section with the following theorem that bounds the fully general

bimolecular algorithm.

Theorem 4.11. If N = (S,R) is constructed according to Construction 4.6 with the

strictly positive real-valued constants k1, . . . , k6 and N̂ = (Ŝ, R̂) is constructed according

to Construction 4.6 with the constants k̂1, . . . , k̂6 defined by k̂1 = k̂2
2

= min{k1,
k2
2
},

k̂3 = k̂4
2

= max{k3,
k4
2
}, and k̂5 = k̂6

2
= max{k5,

k6
2
}, then the behavior of X in N is lower

bounded by X̂ in N̂ .

Proof. The theorem immediately follows from the fact that we are only reducing the rate

constants responsible for generating X and increasing the rate constants responsible for

destroying X.

The above theorem shows that we can bound the behavior of a fully general CRN

from Construction 4.6 by a slightly modified CRN. Modifying the CRN in this way

may not always be possible, but in the most common uses of the algorithm, the rate

constants k1, . . . , k6 are “close” to satisfying the constraints (4.35)-(4.37), therefore the

modifications are minor.
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CHAPTER 5. INPUT/OUTPUT CRNS∗

The deterministic CRN model that we have been investigating specifies systems which

are autonomous and receive no input other than what is encoded into the initial state.

However, in chapter 3 we introduced a notion of concentration signal operators which

transform one concentration signal into another. We have computed these operators by

extending one CRN (which generates the input signal) into a new CRN that uses the

original CRN to compute the new signal. However, many of the CRNs that compute

these operators have the following undesirable features.

1. The structure of the enclosing CRN depends on the structure of the sub-CRN that

generates the input signal.

2. The initial state of the enclosing CRN depends on a precise relationship to the

initial state of the sub-CRN.

In practice, it is desirable to design CRNs that act only on the input signal directly and

not depend on how the signal is produced. Likewise, it is desirable to have a single initial

state of a CRN that handles all valid input signals rather than have the initial state

depend on the input signal directly.

In this chapter, we introduce a new model called input/output chemical reaction

networks which is an extension of the CRN model we have been investigating previously.

This new model provides a more intuitive and robust means of computing concentration

∗ The material in this chapter is joint work with Jim Lathrop and Jack Lutz that has been presented
briefly in the posters at the 21st Conference on DNA Computing and Molecular Programming, 2015 and
the Molecular Programming Project 2016 Annual Workshop. This work will also appear in a forthcoming
extension of [40].
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signal operators that avoid the undesirable features above and also promotes the modular

design of chemical systems. The model was inspired by the input/output systems of

control theory [9, 22], and we borrow terminology and notation to remain as consistent

as possible.

Formally, an input/output chemical reaction network (I/O CRN ) is an ordered triple

N = (U,R, S), where

• U, S ⊆ S are finite;

• U ∩ S = ∅;

• R is a finite set of reactions over U ∪ S; and

• species in U only appear as catalysts in R.

Elements of U and S are called input species and state species of N , respectively.

We now specify the deterministic mass action semantics of I/O CRNs. These semantics

are similar to the those we reviewed in chapter 2 with the exception that I/O CRNs

need to be provided with an input signal and an output interface. Therefore we define a

context of an I/O CRN N = (U,R, S) as an ordered triple c = (u, V, h), where u ∈ C[U ]

is an input signal, V ⊆ S is a set of output species, and h : [0,∞)S∪U → [0,∞)V is an

output function. We write CN for the set of all contexts of N . Intuitively, the semantics

of an I/O CRN N specify how it behaves in a context (u, V, h).

Let N = (U,R, S) be an I/O CRN. A state of N is a vector x ∈ [0,∞)S; an input

state of N is a vector u ∈ [0,∞)U ; and a global state of N is a vector (x,u) ∈ [0,∞)S∪U ,

where x is a state of N and u is an input state of N .

For each reaction ρ ∈ R and each (x,u) ∈ [0,∞)S∪U , we define the rate of ρ in the

global state (x,u) to be

ratex,u(ρ) = k(ρ)
∏

Y ∈S∪U

(x,u)(Y )r(ρ)(Y ). (5.1)
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Notice that equation (5.1) has the same structure as equation (2.2), therefore if ρ is the

reaction X+Y
k−−→ X+2Z, where X ∈ U and Y, Z ∈ S, then ratex,u(ρ) = k ·u(X)·x(Y ).

Similarly, for each Y ∈ S we define the deterministic mass action rate function

FY : [0,∞)S∪U → R by

FY (x,u) =
∑
ρ∈R

ratex,u(ρ)∆ρ(Y ) (5.2)

for all x ∈ [0,∞)S and u ∈ [0,∞)U , noting its similarity to equation (2.3).

Now let (u, V, h) be a context of the I/O CRN N . Then if the state of N is x(t) ∈

[0,∞)S at time t, then the concentration of each state species Y ∈ S must obey the

ordinary differential equation (ODE)

y′(t) = FY (x(t),u(t)). (5.3)

If we define the vector-valued function F : [0,∞)S∪U → RS by

F (x,u) = (FY (x,u) | Y ∈ S) (5.4)

for all x ∈ [0,∞)S and u ∈ [0,∞)U , then the deterministic mass action system of N in

the context (u, V, h) is the vector

x′(t) = F (x(t),u(t)). (5.5)

We also note that equations (5.3)-(5.5) are symmetrical to equations (2.4)-(2.6).

If an I/O CRN N is initialized to a state x0 ∈ [0,∞)S at time 0 in the context (u, V, h),

then its state evolves according to the mass action system (5.5). The deterministic mass

action initial value problem (IVP) of N in the context (u, V, h) with the initial state x0 is

thus the initial value problem consisting of the mass action system (5.5) together with the

initial value condition y(0) = x0(Y ) for each Y ∈ S. By the standard existence-uniqueness
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theory for ODEs [7, 64], this mass action IVP has a solution x(t) that is defined for all

t ∈ [0, b) for some b ∈ (0,∞], and this solution is unique. It is not difficult to show, then,

that x(t) ∈ [0,∞)S holds for all t ∈ [0, b), i.e., that concentrations remain nonnegative.

In the context (u, V, h) of N , the observed output of N is given by the output function

h : [0,∞)S∪U → [0,∞)V . In most cases, this function h is some approximation, due to

experimental error, of the zero-error projection function h0 : [0,∞)S∪U → [0,∞)V defined

by

h0(x,u)(Y ) = x(Y ) (5.6)

for all Y ∈ V . If x(t) is a solution to the IVP as described in the preceding paragraph,

then the output signal of the I/O CRN N in the context c = (u, V, h) with the initial

state x0 is the (continuous) function Nc,x0 : [0,∞)→ [0,∞)V defined by

Nc,x0(t) = h(x(t),u(t)) (5.7)

for all t ∈ [0,∞).

In the language of control theory, an input/output system is a system of the form

(5.5), where x(t) and u(t) range over more general state spaces X and U , together with a

function h : X × U → V for some space V of values. The input signal u is often called a

control signal, and the output function h is often called a measurement function.

By comparing the equations (5.1)-(5.5) with equations (2.2)-(2.6), it is clear that a

CRN N = (S,R) is equivalent to the I/O CRN N̂ = (∅, R, S). It is also useful to note

that the I/O CRNs considered here have mass action systems that are neither autonomous

nor polynomial.

We also note that I/O CRNs offer a natural means for modularizing constructions. It

is often convenient to write the components of an I/O CRN N = (U,R, S) as U [N ] = U ,
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R[N ] = R, and S[N ] = S. The join of a finite family N of I/O CRNs is the I/O CRN

⊔
N = (U∗ \ S∗, R∗, S∗), (5.8)

where U∗ =
⋃
N∈N U [N ], R∗ =

⋃
N∈N R[N ], and S∗ =

⋃
N∈N S[N ].

If S[N ] ∩ S[N ′] = ∅ for distinct N,N ′ ∈ N , then the reactions of N and N ′ do not

interfere with each other, and
⊔
N is the modular composition of the I/O CRNs in N .

5.1 I/O Time-Dependent CRNs

We now briefly introduce a variant of the I/O CRN model called I/O time-dependent

CRNs (I/O tdCRNs). This model is used in section 5.2 to define what it means for an I/O

CRN to be robust with respect to rate constants. Intuitively, an I/O tdCRN is simply an

I/O CRN in which the “rate constants” of the reactions are allowed to vary over time.

Formally, a time-dependent reaction over a finite set S ⊆ S is a triple ρ = (r,p, k̂)

where r,p ∈ NS and k̂ : [0,∞) → [0,∞) is a continuous function. As before, we write

r(ρ) = r, p(ρ) = p, and k̂(ρ) = k̂, and we use more intuitive notions like

X + Z
k̂−−→ 2Y + Z,

remembering that k̂ is now a function of time, rather than a constant. An input/output

time-dependent CRN (I/O tdCRN ) is then an ordered triple

N̂ = (U, R̂, S),

where U and S are as in the I/O CRN definition and R̂ is a finite set of time-dependent

reactions over S. The deterministic mass action semantics of an I/O tdCRN N̂ = (U, R̂, S)
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is defined in the obvious way, rewriting (5.1)–(5.5) as

ratex,u(ρ)(t) = k̂(ρ)(t)(x,u)r(ρ), (5.9)

FY (x,u, t) =
∑
ρ∈R̂

ratex,u(ρ)(t)∆ρ(Y ), (5.10)

y′(t) = FY (x(t),u(t), t), (5.11)

(EY | Y ∈ S), (5.12)

F (x,u, t) = (FY (x,u, t) | Y ∈ S), (5.13)

x′(t) = F (x(t),u(t), t). (5.14)

The output signal N̂c,x0 of an I/O tdCRN N̂ in the context c with initial state x0 is

defined in the now-obvious manner.

Let N = (U,R, S) be an I/O CRN, and let δ ∈ [0,∞). A δ-perturbation of N is an

I/O tdCRN N̂ = (U, R̂, S) in which R̂ is exactly like R, except that each reaction (r,p, k)

is replaced by a time-dependent reaction (r,p, k̂) satisfying

|k̂(t)− k| ≤ δ (5.15)

for all t ∈ [0,∞).

5.2 Robustness of I/O CRNs

This section specifies what a requirement for an input/output chemical reaction

network is and what it means for a reaction network to satisfy such a requirement

robustly.

Intuitively, a requirement for an I/O CRN N with an initial state x0 says that, in

any context c = (u, V, h) satisfying a context assumption α(c), a desired relationship

φ(u, Nc,x0) should hold between the input signal u and the output signal Nc,x0 . More
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formally, a requirement for N is an ordered pair Φ = (α, φ), where the predicates

α : CN → {false, true} and φ : C[U ] × C[V ] → {false, true} are called the context

assumption and the input/output requirement (I/O requirement), respectively, of Φ. The

I/O CRN N exactly satisfies a requirement Φ = (α, φ) with the initial state x0 ∈ [0,∞)S,

and we write N,x0 |= Φ, if the implication

α(c) =⇒ φ(u, Nc,x0) (5.16)

holds for every context c = (u, V, h) ∈ CN . The I/O CRN N exactly satisfies Φ, and we

write N |= Φ, if there exists x0 ∈ [0,∞)S such that N,x0 |= Φ.

Two things should be noted about the above definition. First, a requirement only

concerns input and outputs. Two different I/O CRNs with different sets of state species

may satisfy the same requirement. Second, in order for N |= Φ to hold, a single initial

state x0 must cause (5.16) to hold for every context c.

It is often sufficient to satisfy a requirement approximately, rather than exactly.

To quantify the approximation here, we use the supremum norm defined by ‖f‖ =

supt∈[0,∞) |f(t)| for all f ∈ C([0,∞),RW ), where

|x| =

(∑
Y ∈W

x(Y )2

)1/2

is the Euclidean norm on RW . It is well known that ‖f−g‖ is then a well behaved distance

between functions f, g ∈ C([0,∞),RW ), hence also between functions f, g ∈ C[W ]. For

f ∈ C[W ] and ε ∈ [0,∞) we thus define the closed ball of radius ε about f in C[W ] to

be the set Bε(f) of all g ∈ C[W ] such that ‖g − f‖ ≤ ε.

For ε ∈ [0,∞) we say that the I/O CRN N ε-satisfies a requirement Φ = (α, φ) with

the initial state x0 ∈ [0,∞)S, and we write N,x0 |=ε Φ, if the implication

α(c) =⇒ (∃v ∈ Bε(Nc,x0))φ(u,v) (5.17)
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holds for every context c = (u, h) ∈ CN . The I/O CRN N ε-satisfies Φ, and we write

N |=ε Φ, if there exists x0 ∈ [0,∞)S such that N,x0 |=ε Φ.

It is clear by inspection of (5.16) and (5.17) that |= is equivalent to |=0.

We now come to robustness. Intuitively, an I/O CRN N with an initial state x0

robustly ε-satisfies a requirement Φ = (α, φ) if, for every context c satisfying α(c), the

following holds: For every “ĉ close to c,” every “x̂0 close to x0,” and every “N̂ close

to N ,” the right-hand side of (5.17) holds with N̂ĉ,x̂0 in place of Nc,x0 . To make this

intuition precise, we define the three phrases in quotation marks.

We have already used the supremum norm to define the distance ‖f − g‖ between

two signals f, g ∈ C[W ]. We use the same idea and notation to define the distance

between two functions f, g : [0,∞)W → [0,∞)W
′

and the closed ball of radius ε about f .

Given contexts c = (u, V, h) and ĉ = (û, V̂ , ĥ), and given δ1, δ2 ∈ [0,∞), we say that ĉ is

(δ1, δ2)-close to c if V = V̂ and (û, ĥ) ∈ Bδ1(u)×Bδ2(h).

Given x, x̂ ∈ [0,∞)S and δ ∈ [0,∞), we say that x̂ is δ-close to x if x̂ ∈ Bδ(x), where

the closed ball Bδ(x) in [0,∞)S is defined in the obvious way using the Euclidean norm.

Finally, we say that N̂ is δ-close to N if N̂ is a δ-perturbation of N .

Putting this all together, let N = (U,R, S) be an I/O CRN, let x0 ∈ [0,∞)S be

an initial state of N , let Φ = (α, φ) be a requirement for N , let ε ∈ [0,∞), and let

δ = (δ1, δ2, δ3, δ4) ∈ (0,∞)4 be a vector of strictly positive real numbers. We say that N

and x0 δ-robustly ε-satisfy Φ, and we write N,x0 |=δ
ε Φ, if, for every c = (u, V, h) ∈ CN

satisfying α(c), every ĉ that is (δ1, δ2)-close to c, every x̂0 that is δ3-close to x0, and every

N̂ that is δ4-close to N , there exists v ∈ Bε(N̂ĉ,x̂0) such that φ(u,v) holds. Finally, we

say that N δ-robustly ε-satisfies Φ, and we write N |=δ
ε Φ, if there exists x0 ∈ [0,∞)S

such that N,x0 |=δ
ε Φ.

We extend the notations |=, etc., to the satisfaction of finite sets Φ of requirements Φ

in the obvious way.
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CHAPTER 6. ROBUST SIGNAL CONDITIONING∗

Signal conditioning is a general term referring to preparing a signal for the next stage

of processing. In this chapter, we study a specific type of signal conditioner that serves

to help remove noise from a particular input signal. The types of signals we concern

ourselves with here are those that encode a binary sequence by contrasting “low” and

“high” concentrations. This is a common technique of encoding a binary sequence and

is used in electronics by the contrast of low and high voltages in a circuit. Ideally, we

would want a binary sequence to be encoded into a concentration signal as a square wave

where the high corresponds to a 1 and the low corresponds to a 0. In reality, we can only

approximate this type of encoding, and it is common for a signal to degrade during various

computations so that the differences between high and low become indistiguishable. In

chapter 4 we studied two signal restoration algorithms that help prevent a certain type of

degrading over time. However, these algorithms are designed to help store a single bit

of memory indefinitely rather than clean up a sequence of time-varying bits encoded in

a concentration signal. The signal conditioning I/O CRN presented here, however, is

designed to copy an input signal and literally just make the high points higher and the

low points lower.

We begin by formally stating the requirement of our signal conditioning system. Let

τ > 0, and let X ∈ S be a species. Define the requirement Φ(X) = Φ(X)(τ) = (α, φ) as

∗ The material in this chapter is joint work with Jim Lathrop and Jack Lutz that has been presented
briefly in the posters at the 21st Conference on DNA Computing and Molecular Programming, 2015 and
the Molecular Programming Project 2016 Annual Workshop. This work will also appear in a forthcoming
extension of [40].
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follows. The context assumption α : C[{X}]→ {false, true} of Φ(X) is defined by

α(u, V, h) ≡
[
V = {X∗, X∗} and h = h0

]
. (6.1)

Notice that this context assumption simply requires that the I/O CRN has one input

species X and two output species X∗ and X
∗
. The restriction that the output function

is the zero-error projection function (5.6) is a necessary because we are only concerning

ourselves with basic measurement functions that are trying to measure the concentrations

of the output species exactly. Noise will be introduced into this output function when we

show that this requirement is robustly satisfied.

The I/O requirement φ of Φ(X) requires a little more work, and we begin by defining

some terminology and notation. If I ⊆ [0,∞) is a closed interval, we write |I| to denote

the length of the interval. If I = [a, b] and |I| ≥ τ , we define the subinterval Iτ = [a+ τ, b]

which is simply the interval I with τ sliced off the left-hand side.

Now let u ∈ C[{X}] be an input signal, and let v ∈ C[{X∗, X∗}] be an output signal.

An input event is an ordered pair (b, I) where b ∈ {0, 1} is a bit, I ⊆ [0,∞) is a closed

interval with |I| ≥ τ , and u(t)(X) = b for all t ∈ I. The set of all input events over u is

denoted IEV. Intuitively, an input event is simply a segment of the input signal which

has length at least τ and presents a single bit for the duration of the interval.

Similarly, an output event is an ordered pair (b, I) where b ∈ {0, 1}, I ⊆ [0,∞) is a

closed interval, and the following two conditions hold.

1. If b = 1, then v(t)(X∗) ≥ 1 and v(t)(X
∗
) = 0.

2. If b = 0, then v(t)(X∗) = 0 and v(t)(X
∗
) ≥ 1.

The set of all output events over v is denoted OEV. An output event (b, I) is a segment

of the output signal that presents the bit b in a dual-rail format, i.e., X∗ matches the bit

b and X
∗

matches the bit 1− b during the interval.
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We now define the I/O requirement φ of Φ(X) to be

φ(u,v) ≡
[
(b, I) ∈ IEV =⇒ (b, Iτ ) ∈ OEV

]
. (6.2)

This completes our specification of Φ(X).

Intuitively, the requirement Φ(X) requires an I/O CRN to have one input species

X, two output species X∗, X
∗
, and requires that whenever the input signal has exactly

concentration b ∈ {0, 1}, the output signal needs to, within τ time, make the species X∗

become b and the species X
∗

become 1− b. Therefore the output species encode both

the original bit b and its compliment 1− b.

By inspecting equations (6.1) and (6.2), we can see that the requirement matches

this intuition. As an example, suppose an input signal x(t) contains input events which

only get within δ ∈ (0, 1
2
) of the bits it is encoding. Then, what we desire is an I/O CRN

which is capable of improving this signal so that it gets within ε < δ of the bits it is

encoding and only introducing τ amount of delay. Figure 6.1 depicts what the output of

such an I/O CRN would be given such a perturbed input signal.

We now give a construction that specifies a family of I/O CRNs that are capable of

robustly satisfying the requirement Φ(X). We first state the construction formally, and

afterwards we give an intuitive overview of how it works.

Construction 6.1. Given the real numbers τ > 0, ε > 0, and δ = (δ1, δ2, δ3, δ4) where

δ1 ∈ (0, 1
3
), δ2 ∈ [0, ε), δ3 ∈ (0, 1

2
), and δ4 > 0, let b = 1−δ1

2δ1
and n = d2 logb(

8
ε−δ2 )e.

Define the I/O CRN N (X) = N (X)(τ, ε, δ) = (U,R, S) where

U = {X}, S = {Xi | 0 ≤ i ≤ n} ∪ {X∗, X∗},



www.manaraa.com

58

x

t

1 + δ

1

1− δ

δ

0

(a) An input signal x(t) with two input events.

x∗

t

1

0

1− ε

ε

τ τ

(b) An output signal x∗(t) that satisfies the I/O requirement φ.

Figure 6.1: The two graphs demonstrate the relationship the I/O requirement φ imposes
on the input and output signals. The output signal x∗(t) is essentially a “cleaner” version
of the input signal x(t). Note that other output signal x∗(t) is not depicted.
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and where R consists of the reactions

X +Xi
k1−−→ X +Xi+1 (∀ 0 ≤ i < n)

Xi
k1−−→ X0 (∀ 0 < i ≤ n)

Xn +X
∗ k2−−→ Xn +X∗

X∗
k2−−→ X

∗
,

and the rate constants k1 and k2 are defined by

k1 = 2δ4 +
2n log(2n)

τ(1− δ1)
+

2

τ
log

(
10

(
8

ε− δ2

)2(
2

1− δ1

)n)
+
δ4(2 + δ1)

δ1

,

k2 =
2

τ
log

(
3

ε− δ2

)
+ 4δ4.

We also define the initial state x
(X)
0 of the I/O CRN N (X) by

x
(X)
0 (X∗) = 0,

x
(X)
0 (X

∗
) = 1 + δ3,

x
(X)
0 (X0) =

10

ε− δ2

(
2

1− δ1

)n
+ δ3,

x
(X)
0 (Xi) = 0 (∀ 0 < i ≤ n).

The above construction looks overwhelmingly complicated, but the intuition behind

the construction is simple. The parameter τ corresponds to the delay, ε corresponds to

how well the output needs to be “cleaned up,” and δ = (δ1, δ2, δ3, δ4) corresponds to how

robust the I/O CRN needs to be. These parameters tune the construction so as to satisfy

the requirement Φ(X) in a robust way.

The species of the I/O CRN are naturally separated into two parts. The first part

is the cascade of species X0, . . . , Xn where the length of the cascade n is defined in the
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construction. This cascade is designed so that every species Xi “falls down” to the bottom

of the cascade X0 at a constant rate, and each species Xi “climbs up” to the next species

Xi+1 at a rate proportional to the input X. As a result, whenever the concentration of the

input species X is low, the top of the cascade Xn is extremely low. Similarly, whenever

the concentration of X is relatively high, the concentration of Xn becomes relatively high.

The second part of the I/O CRN N (X) consists of the species X∗ and X
∗

which are

the output species. These species always sum to a concentration of 1, and the presence of

the species Xn causes X∗ to dominate and the absence of Xn causes X
∗

to dominate. The

cascade and the two species X∗ and X
∗

both collaborate to clean up the input signal.

The length of the cascade, the rate constants, and the initial concentration of X0 are

all carefully set and depend on the parameters of N (X). The more robust and the more

cleaning up the CRN has to do, the longer the cascade must be, etc. The reason for their

complexity becomes apparent in the proof of the main theorem of this chapter, stated

below.

Theorem 6.2. If τ > 0, ε ∈ (0, 1
2
), δ = (δ1, δ2, δ3, δ4) with δ1 ∈ (0, 1

3
), δ2 ∈ (0, ε),

δ3 ∈ (0, 1
2
), δ4 > 0, and N (X) = N (X)(τ, ε, δ) and x

(X)
0 are constructed according to

Construction 6.1, then

N (X),x
(X)
0 |=δ

ε Φ(X)(τ). (6.3)

The rest of this chapter is devoted to proving Theorem 6.2. This proof is rather

extensive and is partitioned into two parts. Section 6.1 is dedicated to the analysis of the

ODEs generated by the cascade of species of N (X), and section 6.2 presents a complete

proof of Theorem 6.2.

6.1 Cascade Analysis

In this section, we only concern ourselves with analyzing systems of ODEs. The

construction below is a simplified specification of the ODEs generated by the cascade
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from Construction 6.1. We use f (“forward”) and b (“backward”) for the rate constants

of climbing up the cascade and falling to the bottom of the cascade, respectively. Notice

that we also fold in the concentration of the input species X into the constant f . This

simplification allows us to thoroughly analyze the behavior of the cascade whenever X is

held constant and is enough to prove the theorem in the following section.

Construction 6.3. Given f > 0, b > 0, and n ∈ N, let x0, . . . , xn : [0,∞)→ [0,∞) be

functions that satisfy the ODEs

dx0

dt
=

n∑
i=1

bxi − fx0, (6.4)

dxi
dt

= fxi−1 − (f + b)xi for 0 < i < n, (6.5)

dxn
dt

= fxn−1 − bxn. (6.6)

We will now solve for explicit solutions to an IVP generated by the ODEs above using

induction. These solutions have similar structure, so we define the following family of

functions to describe their solution.

Construction 6.4. Given f > 0, b > 0, p > 0 and i ∈ N, let Fi : [0,∞)→ [0,∞) be the

function

Fi(t) = p

(
f

f + b

)i
e−(f+b)t

∞∑
k=i

tk(f + b)k

k!
. (6.7)

Observation 6.5. If f > 0, b > 0, p > 0, i ∈ N and Fi is constructed occording to

Construction 6.4, then

∫
e(f+b)t · Fi(t)dt =

1

f
e(f+b)tFi+1(t) + C (6.8)

for some C ∈ R.
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Proof. Assume the hypothesis. Then by the definition of Fi from equation (6.7),

∫
e(f+b)t · Fi(t)dt = p

(
f

f + b

)i ∫ ∞∑
k=i

tk(f + b)k

k!
dt.

Since

∫ ∞∑
k=i

tk(f + b)k

k!
dt =

∞∑
k=i

tn+1(f + b)k

(n+ 1)!
+ C1 =

1

f + b

∞∑
k=i+1

tk(f + b)k

k!
+ C1,

for some C1 ∈ R, we see that

∫
e(f+b)t · Fi(t)dt = p

(
f

f + b

)i(
1

f + b

∞∑
k=i+1

tk(f + b)k

k!
+ C1

)

=
1

f
e(f+b)tFi+1(t) + C

for some C ∈ R.

Lemma 6.6. If f > 0, b > 0, p > 0, n ∈ N, and for 0 ≤ i ≤ n the functions xi and Fi

are constructed according to Construction 6.3 and 6.4 such that x0(0) = p and xi(0) = 0

for all 0 < i ≤ n, then for all t ∈ [0,∞),

xi(t) = Fi(t)− Fi+1(t) for 0 ≤ i < n, (6.9)

xn(t) = Fn(t). (6.10)

Proof. Assume the hypothesis. We begin by proving (6.9) by induction on i.

Since
∑n

i=0
dxi
dt

= 0, it follows that
∑n

i=0 xi(t) = p for all t ∈ [0,∞). Therefore (6.4)

can be simplified to

dx0

dt
= b(p− x0)− fx0,

and has solution

x0(t) = p− p
(

f

f + b

)(
1− e−(f+b)t

)
= F0(t)− F1(t).
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For the induction step, assume that xi(t) = Fi(t) − Fi+1(t) for some 0 ≤ i < n − 1.

By (6.5), the derivative of xi+1 is

dxi+1

dt
= fxi − (f + b)xi+1.

This ODE is of the form

dy

dt
+ f(t) · y = g(t),

which can be solved using the integrating factor method. Using this method, we obtain

the family of solutions

xi+1(t) = e−(f+b)t

∫
e(f+b)tfxi(t)dt

= e−(f+b)t

∫
e(f+b)tf (Fi(t)− Fi+1(t)) dt.

It immediately follows from Observation 6.5 that

xi+1(t) = Fi+1(t)− Fi+2(t) + C · e−(f+b)t

for some C ∈ R. By the initial condition, xi+1(0) = 0, and therefore C = 0. This

completes the induction and shows that (6.9) holds.

It remains to be shown that (6.10) holds. Since
∑n

i=0 xi(t) = p for all t ∈ [0,∞),

xn(t) = p−
n−1∑
i=0

xi(t) = F0(t) +
n−1∑
i=0

Fi+1(t)−
n−1∑
i=0

Fi(t) = Fn(t).

Lemma 6.7. Under the assumptions of Lemma 6.6,

Fn(t) > p

(
f

f + b

)n (
1− ne−

1
n

(f+b)t
)

(6.11)

for all t ∈ [0,∞).
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Proof. It suffices to show that

e−(f+b)t

∞∑
k=n

tk(f + b)k

k!
> 1− ne−

1
n

(f+b)t. (6.12)

The left-hand side of the (6.12) is related to the incomplete gamma function. In fact,

e−(f+b)t

∞∑
k=n

tk(f + b)k

k!
=
γ(n, (f + b)t)

(n− 1)!
,

where γ(a, x) is the lower incomplete gamma function. The incomplete gamma function

is well understood and many useful bounds exist. One particularly useful bound by Alzer

[1, 30] is

γ(a, x)

Γ(a)
>
(
1− e−sax

)a
,

for a ≥ 1 where sa = |Γ(1 + a)|− 1
a . It follows that

γ(n, (f + b)t)

(n− 1)!
>
(
1− e−sn(f+b)t

)n
,

where sn = (n!)−
1
n . Since nn ≥ n!, we know sn >

1
n
, whence

γ(n, (f + b)t)

(n− 1)!
>
(

1− e−
1
n

(f+b)t
)n

> 1− ne−
1
n

(f+b)t.

Corollary 6.8. Under the assumptions of Lemma 6.6 with (f + b)t ≥ n log(2n),

Fn(t) >
p

2

(
f

f + b

)n
(6.13)

for all t ∈ [0,∞).

Lemma 6.9. If f > 0, b > 0, p > 0, n ∈ N, and for 0 ≤ i ≤ n the functions xi and Fi are

constructed according to Construction 6.3 and 6.4 such that xi(0) = 0 for all 0 ≤ i < n
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and xn(0) = p, then for all t ∈ [0,∞),

xi(t) =
b

f
Fi+1(t) for 0 ≤ i < n. (6.14)

Proof. Assume the hypothesis. We prove (6.14) by induction on i.

Since
∑n

i=0
dxi
dt

= 0, it follows that
∑n

i=0 xi(t) = p for all t ∈ [0,∞). Therefore (6.4)

can be simplified to

dx0

dt
= b(p− x0)− fx0,

and has solution

x0(t) = p

(
b

f + b

)(
1− e−(f+b)t

)
=
b

f

(
p

(
f

f + b

)
e−(f+b)t

∞∑
k=1

tk(f + b)k

k!

)
=
b

f
· F1(t).

For the induction step, assume that xi(t) = b
f
Fi+1(t) for some 0 ≤ i < n− 1. By (6.5),

the derivative of xi+1 is

dxi+1

dt
= fxi − (f + b)xi+1.

By the integrating factor method, we obtain the solution

xi+1(t) = e−(f+b)t

∫
e(f+b)tfxi(t)dt

= e−(f+b)t

∫
e(f+b)tbFi+1(t)dt.

It follows from Observation 6.5 that

xi+1(t) =
b

f
Fi+2(t) + Ce−(f+b)t

for some C ∈ R. By the initial condition, xi+1(0) = 0, and therefore C = 0. This

completes the induction.
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Lemma 6.10. Under the assumptions of Lemma 6.9,

xn(t) < pe−bt + p

(
f

f + b

)n (
1− e−bt

)
(6.15)

for all t ∈ [0,∞).

Proof. Assume the hypothesis. By equation (6.6), the derivative of xn is

dxn
dt

= fxn−1(t)− bxn(t).

Therefore xn has a solution of the form

xn(t) = e−bt
∫
ebtfxn−1(t)dt.

By Lemma 6.9, we know that xn−1(t) = b
f
Fn(t), therefore

xn(t) = e−bt
∫
ebtbFn(t)dt

= e−bt
∫
ebtbp

(
f

f + b

)n
e−(f+b)t

∞∑
k=n

tk(f + b)k

k!
dt

= bp

(
f

f + b

)n
e−bt

∫
e−ft

∞∑
k=n

tk(f + b)k

k!
dt.

Using the Taylor series of the exponential function, we can rearrange the integral to

obtain

∫
e−ft

∞∑
k=n

tk(f + b)k

k!
dt =

∫
e−ft

(
e(f+b)t −

n−1∑
k=0

tk(f + b)k

k!

)
dt

=

∫
ebtdt−

n−1∑
k=0

(f + b)k

k!

∫
tke−ftdt.
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Since ∫
tke−ftdt = − k!

fk+1
e−ft

k∑
i=0

tif i

i!
+ C1,

for some C1 ∈ R, and ∫
ebtdt =

1

b
ebt + C2,

for some C2 ∈ R, we see that

xn(t) = bp

(
f

f + b

)n
e−bt

[
1

b
ebt −

n−1∑
k=0

(f + b)k

k!

(
− k!

fk+1
e−ft

k∑
i=0

tif i

i!

)
+ C3

]

= p

(
f

f + b

)n
+ p

b

f
e−bt

n−1∑
k=0

(
f

f + b

)n−k−1

e−ft
k∑
i=0

tif i

i!
+ C4e

−bt

for some C3, C4 ∈ R. By the initial condition, xn(0) = p. Therefore we can solve for C4

in the equation

p = p

(
f

f + b

)n
+ p

b

f

n−1∑
k=0

(
f

f + b

)n−k−1

+ C4,

and we see that

C4 = p− p
(

f

f + b

)n
− p b

f

n−1∑
k=0

(
f

f + b

)n−k−1

.

After substituting this value for C4 into our equation for x4, we obtain

xn(t) = pe−bt + p

(
f

f + b

)n (
1− e−bt

)
+ p

b

f
e−bt

n−1∑
k=0

(
f

f + b

)n−k−1
(
e−ft

k∑
i=0

tif i

i!
− 1

)

= pe−bt + p

(
f

f + b

)n (
1− e−bt

)
− p b

f
e−(f+b)t

n−1∑
k=0

(
f

f + b

)n−k−1 ∞∑
i=k+1

tif i

i!

< pe−bt + p

(
f

f + b

)n (
1− e−bt

)
.

At this point, we have derived the solutions and bounds necessary for the cascade

of species X0, . . . , Xn from Construction 6.1. However, we must prove a few lemmas

concerning the other two species X∗ and X
∗

that interact with the top of the cascade.
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Construction 6.11. Given f > 0 and b > 0, let x, x : [0,∞)→ [0,∞) be functions that

satisfy the ODEs

dx

dt
= fx− bx, (6.16)

dx

dt
= bx− fx. (6.17)

Lemma 6.12. If x and x are functions constructed according to Construction 6.11 with

f > 0 and b > 0, then for all t ∈ [0,∞),

x(t) = p

(
f

f + b

)(
1− e−(f+b)t

)
+ x(0) · e−(f+b)t (6.18)

x(t) = p− x(t), (6.19)
(6.20)

where p = x(0) + x(0).

Proof. Assume the hypothesis. Since dx
dt

+ dx
dt

= 0, it follows that for all t ∈ [0,∞)

x(t) + x(t) = x(0) + x(0),

and therefore (6.19) holds.

To show (6.18) holds, we solve the ODE (6.16) which can be simplified to

dx

dt
= f(p− x)− bx,

which has solution (6.18).

Lemma 6.13. If ε ∈ (0, 1
2
), τ > 0, and x, x are constructed according to Construction 6.3

with p = x(0) + x(0), and

f ≥ 1

τ
log

(
2p

ε

)
, b ≤ f

(
ε

2p

)
,

then for all t ≥ τ ,

x(t) > p− ε, and x(t) < ε.
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Proof. Assume the hypothesis. Then by Lemma 6.12, for all t ≥ τ ,

x(t) ≥ p

(
f

f + b

)(
1− e−(f+b)τ

)
+ x(0)e−(f+b)τ ≥ p

(
f

f + b

)(
1− e−fτ

)
.

Since f ≥ 1
τ

log
(

2p
ε

)
and b ≤ f

(
ε

2p

)
,

x(t) ≥ p

(
1

1 + ε
2p

)(
1− ε

2p

)
.

Since ε
2p
< ε

2p−ε , Since ε
2p
< ε

2p−ε ,

x(t) > p

(
1

1 + ε
2p−ε

)(
1− ε

2p

)
= p

(
1− ε

2p

)2

> p− ε.

6.2 Proof of Theorem

Assume the hypothesis of Theorem 6.2. Then τ > 0, ε ∈ (0, 1
2
), δ = (δ1, δ2, δ3, δ4)

with δ1 ∈ (0, 1
3
), δ2 ∈ (0, ε), δ3 ∈ (0, 1

2
), δ4 > 0, and N(X) = N (X)(τ, ε, δ) and x

(X)
0 are

constructed according to Construction 6.1. Then we need only show that N (X),x
(X)
0 |=δ

ε

Φ(X)(τ).

Now let n = |S| − 2, let c = (u, V, h) be a context satisfying α(c), let ĉ = (û, V, ĥ) be

(δ1, δ2)-close to c, let x̂0 be δ3-close to x
(X)
0 , let N̂ be δ4-close to N (X), and let p and p∗

be the constants

p =
n∑
i=0

x̂0(Xi),

p∗ = x̂0(X∗) + x̂0(X
∗
).

It now suffices to show that N̂ĉ,x̂0 is ε-close to a function v ∈ C[V ] that satisfies φ(u,v),

i.e., if (b, I) is an input event for u, then (b, Iτ ) must be an output event for v. We prove

this in two cases corresponding to b = 1 and b = 0 by invoking many of the lemmas from

the previous section.
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The state species of N̂ are naturally split up into two parts. The first part is the

cascade of species X0, . . . , Xn, and the second part are the species X∗, X
∗

which are

affected by the top of the cascade. The ODEs for species X0, . . . , Xn of N̂ can be derived

from the reactions in Construction 6.1 along with the perturbed mass action function

from equation (5.11) and are

dx0

dt
=

n∑
i=1

k̂1xi − (k̂1x)x0, (6.21)

dxi
dt

= (k̂1x)xi−1 − (k̂1x+ k̂1)xi for 0 < i < n, (6.22)

dxn
dt

= (k̂1x)xn−1 − k̂1xn. (6.23)

Similarly, the ODEs for X∗ and X
∗

are

dx∗

dt
= (k̂2xn)x∗ − k̂2x

∗, (6.24)

dx∗

dt
= k̂2x

∗ − (k̂2xn)x∗. (6.25)

Since dx∗

dt
+ dx∗

dt
= 0, it is easy to show that x∗(t) + x∗(t) = p∗ for all t ∈ [0,∞).

Similarly,
∑n

i=0 xi(t) = p for all t ∈ [0,∞).

Let (1, I) be an input event for u, and let I = [t1, t2]. Since the input signal can be

perturbed by δ1, it follows that x(t) > 1− δ1 for all t ∈ I. We also know that the rate

constants can be perturbed by δ4. To minimize the concentration of Xn in the interval I,

we assume that all the concentration of X0, . . . , Xn is in X0 at time t1. We also maximize

the rate of falling down the cascade and minimize the rate of climbing the cascade.

Therefore by Lemma 6.6, for all t ∈ I,

xn(t) > p

(
f

f + b

)n ∞∑
i=n

ti(f + b)i

i!
e−(f+b)(t−t1),
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where f = (k1 − δ4)(1− δ1) and b = k1 + δ4. Since xn is monotonically increasing, for all

t ∈ [t1 + τ
2
, t2], xn(t) ≥ xn( τ

2
), and therefore

xn(t) > p

(
f

f + b

)n ∞∑
i=n

ti(f + b)i

i!
e−(f+b) τ

2 .

By Lemma 6.7, for all t ∈ [t1 + τ
2
, t2],

xn(t) > p

(
f

f + b

)n (
1− ne−

1
n

(f+b) τ
2

)
.

Since k1 > δ4 + 2n
τ(1−δ1)

log(2n), Corollary 6.8 tells us

xn(t) > p

(
f

f + b

)n(
1

2

)
=
p

2

(
(k1 − δ4)(1− δ1)

(k1 − δ4)(1− δ1) + k1 + δ4

)n
=
p

2

(
1− δ1

1− δ1 + u

)n
,

where u = k1+δ4
k1−δ4 . Since k1 > 2 δ4(2+δ1)

δ1
, we know that u < 1 + δ1 and therefore

xn(t) >
p

2

(
1− δ1

2

)n
.

Since the initial condition can be perturbed by at most δ3, p > 10
ε−δ2

(
2

1−δ1

)n
, therefore

xn(t) >
5

ε− δ2

,

for all t ∈ [t1 + τ
2
, t2].

Recall that the ODEs for X∗ and X
∗

are (6.24) and (6.25). To minimize the concen-

tration of X∗ in the interval [t1 + τ
2
, t2], we minimize the production of X∗ and maximize

the production of X
∗
. By Lemma 6.12, for all t ∈ [t1 + τ, t2],

x∗(t) > p∗
(

f

f + b

)(
1− e−(f+b) τ

2

)
,
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where f = (k2 − δ4) 5
ε−δ2 and b = k2 + δ4. Since k2 > 4δ4, then k2+δ4

k2−δ4 <
5
3

and therefore

b = k2 + δ4 <
ε− δ2

3

[
(k2 − δ4)

5

ε− δ2

]
=
ε− δ2

3
f,

whence

b <
ε− δ2

2p∗
f.

Since 5
ε−δ2 > 1 and k2 = 2

τ
log
(

3
ε−δ2

)
+ 4δ4,

f = (k2 − δ4)
5

ε− δ2

>
2

τ
log

(
3

ε− δ2

)
,

whence

f >
2

τ
log

(
2p∗

ε− δ2

)
.

By Lemma 6.13, for all t ∈ [t1 + τ, t2],

x∗(t) > p∗ − ε+ δ2.

Since the initial state can only be perturbed by at most δ3 and the output function can

only introduce δ2 error, it follows that

Nĉ,x̂0(t) > 1− ε.

Therefore N̂ĉ,x̂0(t) is ε-close to satisfying the requirement that (1, Iτ ) is an output event.

It remains to be shown that N̂ĉ,x̂0 is ε-close to handling input events of the form (0, I).

To show this, let (0, I) be an input event, and let I = [t1, t2]. Therefore x(t) < δ1 for all

t ∈ I. Similar to the above argument, by Lemma 6.10, for all t ∈ I,

xn(t) < pe−b(t−t1) + p

(
f

f + b

)n (
1− e−b(t−t1)

)
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where f = (k1 + δ4)δ1 and b = k1 − δ4. Since this function is monotonically decreasing,

for all t ∈ [t1 + τ
2
, t2],

xn(t) < p

(
f

f + b

)n
+ pe−b

τ
2

= p

(
(k1 + δ4)δ1

(k1 + δ4)δ1 + k1 − δ4

)n
+ pe−b

τ
2

= p

(
δ1

δ1 + u

)n
+ pe−b

τ
2 ,

where u = k1−δ4
k1+δ4

. Since k1 >
δ4(2−δ1)

δ1
, we know that u > 1−δ1, whence for all t ∈ [t1+ τ

2
, t2],

xn(t) < pδn1 + pe−b
τ
2 .

Since p < 10
ε−δ2

(
2

1−δ1

)n
+ 2δ3,

xn(t) <
10

ε− δ2

(
2δ1

1− δ1

)n
+ δn1 + pe−b

τ
2

<
10 + ε− δ2

ε− δ2

(
2δ1

1− δ1

)n
+ pe−b

τ
2

<
32

3(ε− δ2)

(
1− δ1

2δ1

)−n
+ pe−b

τ
2 .

Since n ≥ log( 1−δ1
2δ1

) ( 64
(ε−δ2)2

)
,

xn(t) <
32

3(ε− δ2)

(
(ε− δ2)2

64

)
+ pe−b

τ
2

=
ε− δ2

6
+ pe−b

τ
2 .

As we showed before, p < 32
3(ε−δ2)

(
2

1−δ1

)n
+ 2δ3, whence

xn(t) <
ε− δ2

6
+

32

3(ε− δ2)

(
4

1− δ1

)n
e−b

τ
2 + 2δ3e

−b τ
2 .
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Since b = k1 − δ4 >
2
τ

log
(

640
(ε−δ2)2

(
2

1−δ1

)n)
,

xk(t) <
ε− δ2

6
+
ε− δ2

60
+ 2δ3e

−b τ
2 <

ε− δ2

6
+
ε− δ2

30
,

whence for all t ∈ [t1 + τ
2
, t2]

xn(t) <
ε− δ2

5
.

We now bound the concentration of X∗ and X
∗
. If f = (k2 + δ4) ε−δ2

5
and b = k2 − δ4,

then by Lemma 6.12

x∗(t) > p

(
f

f + b

)(
1− e−(f+b) τ

2

)
,

for all t ∈ [t1 + τ, t2]. Since k2−δ4
k2+δ4

> 3
5
,

f = (k2 + δ4)
ε− δ2

5
<
ε− δ2

3
(k2 − δ4) <

ε− δ2

2p∗
b.

Since b = k2 − δ4 >
2
τ

log
(

3
ε−δ2

)
> 2

τ
log
(

2p∗

ε−δ2

)
, by Lemma 6.13, for all t ∈ [t1 + τ, t2],

x∗(t) > p∗ − ε+ δ2.

Since x∗(t) + x∗(t) = p∗ for all t ∈ [0,∞), it follows that x∗(t) < ε − δ2 for all t ∈ Iτ .

Since p∗ > 1 + δ3, it follows that x∗(t) > 1− ε+ δ2 for all t ∈ Iτ .

Finally, since the output function can at most deviate by δ2 from the solutions of x∗(t)

and x∗(t), it is clear that N̂ĉ,x̂0 is ε-close to having (0, Iτ ) as a valid output event.
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CHAPTER 7. ROBUST FINITE AUTOMATA∗

In this chapter we give a uniform translation of a nondeterministic finite automaton

to an I/O CRN that simulates it robustly. Finite automata are ubiquitous in computer

science, but details and notation vary, so we briefly review the specific model used in this

chapter [44].

A nondeterministic finite automaton (NFA) is an ordered 5-tuple M = (Q,Σ,∆, I, F ),

where Q is a finite set of states; Σ is a finite input alphabet ; I ⊆ Q is the set of initial

states; F ⊆ Q is the set of accepting states; and ∆ : Q × Σ → P(Q) is the transition

function. When convenient we identify the transition function ∆ with the set of all

transitions of M , which are triples (q, a, r) ∈ Q×Σ×Q satisfying r ∈ ∆(q, a). Informally,

the size of M is determined by the three cardinalities |Q|, |Σ|, and |∆|.

The extended transition function of the above NFA M is the function ∆̂ : P(Q)×Σ∗ →

P(Q) defined by the recursion

∆̂(A, λ) = A, and

∆̂(A,wa) =
⋃

q∈∆̂(A,w)

∆(q, a)

for all A ⊆ Q, w ∈ Σ∗, and a ∈ Σ, where λ is the empty string. The NFA M accepts an

input string w ∈ Σ∗ if ∆̂(I, w) ∩ F 6= ∅, i.e., if there is a chain of transitions leading from

some state in I to some state in F . Otherwise, M rejects w.

∗ The material in this chapter is joint work with Jim Lathrop and Jack Lutz that has been presented
briefly in the posters at the 21st Conference on DNA Computing and Molecular Programming, 2015 and
the Molecular Programming Project 2016 Annual Workshop. This work will also appear in a forthcoming
extension of [40].
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Figure 7.1: Example input signal for 0110.

Given an NFA M = (Q,Σ,∆, I, F ), our first objective is to specify a requirement

Φ = (α, φ) for an I/O CRN N = (U,R, S) to simulate M . The details of R and S can be

specified later, but U is an implicit parameter of Φ, so we now define the set of input

species of N to be

U = {Xa | a ∈ Σ} ∪ {Xr, Xc}, (7.1)

where r (“reset”) and c (“copy”) are special symbols not occurring in Σ.

An input w ∈ Σ∗ is presented to N as a sequence of pulses in the concentrations of the

|Σ|+ 2 input species. Each character a ∈ Σ in the string w is represented by a sequence

of three pulses starting with a pulse in the concentration of Xr, followed by a pulse in

the concentration of Xa, and finally ending with a pulse in the concentration of Xc. An

example sequence of pulses for the binary string 0110 is shown in Figure 7.1. To formally

specify this intuition as a context assumption, a bit more terminology is needed.

If I = [a, b] and J = [c, d] are closed intervals in R, then I lies to the left of J , and

we write I < J , if b < c. Given an input signal u ∈ C[U ] for N , we define the following.

1. For X ∈ U , an X-pulse in u is an interval [b, b + 4], where b ∈ [0,∞), with the

following four properties.
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(a) For all X̂ ∈ U \ {X} and t ∈ [b, b+ 4], x̂(t) = 0.

(b) For all t ∈ {b} ∪ [b+ 3, b+ 4], x(t) = 0.

(c) For all t ∈ [b, b+ 1] ∪ [b+ 2, b+ 3], x(t) ∈ [0, 1].

(d) For all t ∈ [b+ 1, b+ 2], x(t) = 1.

2. For a ∈ Σ, an a-event in u is an interval [b, b+ 12] such that [b, b+ 4] is an Xr-pulse

in u, [b+ 4, b+ 8] is an Xa-pulse in u, and [b+ 8, b+ 12] is an Xc-pulse in u.

3. A symbol event in u is an interval I ⊆ [0,∞) that is an a-event in u for some a ∈ Σ.

4. The input signal u is proper if there is a sequence (Ii | 0 ≤ i < k) of symbol

events in u such that 0 ≤ k ≤ ∞, 1 < Ii < Ii+1 holds for all 0 ≤ i < k − 1, and

u(t)(X) = 0 holds for all X ∈ U and t ∈ [0,∞) \
⋃k−1
i=0 Ii.

5. If u is proper and the sequence (Ii | 0 ≤ i < k) testifies to this fact where Ii is an

ai-event for each 0 ≤ i < k, and if t ∈ [0,∞), then the string presented by u at

time t is the string

w(u)(t) = a0a1 · · · aj−1,

where j is the greatest integer such that 0 ≤ j < k and Ij < t.

6. The input signal u is terminal if it is proper and the sequence (Ii | 0 ≤ i < k)

testifying to this fact is finite, i.e., k ∈ N. In this case, the terminus of u is the

time τ(u) = if k = 0 then 1 else the right endpoint of the interval Ik−1, and the

string presented by u is the string

w(u) = w(u)(τ(u)).

We now have enough terminology to formally state what it means for an I/O CRN

to simulate an NFA. Given an NFA M = (Q,Σ,∆, I, F ), we define the requirement
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Φ = Φ(M) = (α, φ) as follows. The context assumption α of Φ is defined by

α(u, V, h) ≡
[
u is terminal and V = {Yq | q ∈ F} and h = h0

]
, (7.2)

where h0 is the zero-error projection function (5.6).

The I/O requirement φ of Φ is defined by

φ(u,v) ≡ ψ1 and ψ2, (7.3)

where ψ1 and ψ2 are the formulas

ψ1 ≡
[
M accepts w(u) =⇒ (∀t > τ(u))(∃Y ∈ V )v(t)(Y ) = 1

]
, (7.4)

ψ2 ≡
[
M rejects w(u) =⇒ (∀t > τ(u))(∀Y ∈ V )v(t)(Y ) = 0

]
. (7.5)

The two parts ψ1 and ψ2 of the I/O requirement simply correspond to how the I/O CRN

should output “accept” and “reject,” respectively. If the input string presents a string

that should be accepted, ψ1 requires that the output signal have at least one species

Y ∈ V that is held at a value of 1 indefinitely. Similarly, if the input string should be

rejected, ψ2 requires that the output signal hold all species in V at a value of 0 indefinitely.

At this time we now specify our translation of an arbitrary NFA into an I/O CRN

that simulates it. The I/O CRN consists of two separate modules: a signal conditioning

module from chapter 6 that cleans up the input, and a module responsible for the NFA

logic. We begin by defining the I/O CRN that computes the main logic of the NFA, and

later we join this I/O CRN with the signal conditioning module.

Construction 7.1. Given an NFA M = (Q,Σ,∆, I, F ) and strictly positive real numbers

ε and δ = (δ1, δ2, δ3, δ4), we define the I/O CRN N∗ = N∗(M, ε, δ) = (U∗, R∗, S∗) as

follows.
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The set U∗ is the preprocessed equivalent to the species (7.1) specified earlier, i.e.,

U∗ = {X∗a | a ∈ Σ} ∪ {X∗r , X∗c }.

The set S∗ contains the following three types of species.

1. State species. For each state q ∈ Q there is a species Yq. Intuitively, the concentration

of Yq is close to 1 in N when M could (as permitted by its nondeterminism) be in

state q.

2. Portal species. For each state q ∈ Q there is a species Zq that is used as a buffer to

facilitate transitions into the state q.

3. Dual species. For each state species Yq and portal species Zq, there are species Y q

and Zq. We refer to the species Yq, Zq as basic species in order to further distinguish

them from their duals Y q, Zq. Intuitively, a dual of a basic species is one that has

exactly the opposite operational meaning, i.e., when Yq has high concentration, Y q

has low concentration and vice versa.

We define S∗ to be the collection of species of these three types, noting that |S∗| = 4|Q|.

The reactions of N∗ are of four types, designated as follows.

1. Reset reactions. For each state q ∈ Q we have the reaction

X∗r + Zq
k1−→ X∗r + Zq. (7.6)

2. Transition reactions. For each transition (q, a, r) ∈ ∆ of M we have the reaction

X∗a + Yq + Zr
k1−→ X∗a + Yq + Zr. (7.7)
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3. Copy reactions. For each state q ∈ Q we have the reactions

X∗c + Zq + Y q
k2−→ X∗c + Zq + Yq, (7.8)

X∗c + Zq + Yq
k2−→ X∗c + Zq + Y q. (7.9)

4. Signal restoration reactions. For each state q ∈ Q we have the reactions

2Yq + Y q
k2−→ 3Yq (7.10)

2Y q + Yq
k2−→ 3Y q. (7.11)

Note these reactions are an implementation of the termolecular signal restoration

algorithm analyzed in section 4.1.

The rate constants k1 and k2 are defined by

k1 =
30|Q|

ε− δ2 − δ3

, (7.12)

k2 = 18 log(
20|Q|

ε− δ2 − δ3

). (7.13)

We define R∗ to be the collections of reactions of these four types, noting that |R∗| =

|∆|+ 5|Q|. We also note that U∗ ∩ S∗ = ∅ and species in U∗ only appear as catalysts in

R∗, so N∗ is indeed an I/O CRN.

Intuitively, N∗ simulates the NFA M in the following way. The state species Yq

and Y q for q ∈ Q are used to store the states that M could be in at any time. More

specifically, these species encode the set ∆̂(I, w) where w is the string processed so far.

Whenever the input signal provides another symbol event to N∗, it processes the event

in three stages—each corresponding to the three pulses of the symbol event. The first

pulse of a symbol event is the “reset” pulse via the species X∗r . When N∗ receives this

pulse, it forces all of the concentration of the portal species Zq into the species Zq using
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the reactions of equation (7.6). After the X∗r pulse is completed, every Zq species has

concentration close to 0 and every Zq species has concentration close to 1. This reset

process prepares these portal species to compute the transition function.

The second pulse of the symbol event is an X∗a pulse for some symbol a ∈ Σ. When

this pulse arrives, N∗ computes the transition function of the NFA M using the reactions

from equation (7.7). Therefore, after this pulse is processed, the portal species Zq will be

close to 1 if and only if q ∈ ∆̂(I, wa) and close to 0 otherwise.

The last pulse of the symbol event is the “copy” pulse via the species X∗c . During this

pulse, N∗ copies the values of the portal species Zq, Zq back into the state species Yq, Y q

using reactions (7.8) and (7.9). Therefore, after the X∗c pulse has been processed, the set

∆̂(I, wa) is encoded into the state species Yq, Y q which completes the computation.

Finally, the reactions from equations (7.10) and (7.11) are present to prevent the

values stored in the state species from degrading over time. These reactions ensure that

in the absence of a symbol event, the state will remain valid indefinitely.

We now add the signal conditioning module in the following construction. Recall that

our set of input species consists of |Σ| + 2 elements, one for each symbol in the input

alphabet Σ and two for the special symbols r and c. Our preprocessing module consists

of one signal conditioning I/O CRN for each input species, so that every input species is

conditioned to be an approximate square wave. Therefore, the I/O CRN that we will

actually prove satisfies the requirement is shown in the following construction.

Construction 7.2. Given NFA M = (Q,Σ,∆, I, F ) and strictly positive real numbers ε

and δ = (δ1, δ2, δ3, δ4), we define the family of I/O CRNs N = N (M, ε, δ) by

N = {N∗} ∪
{
N (Xa) | a ∈ Σ ∪ {r, c}

}
, (7.14)
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where N∗ = N∗(M, ε, δ) is constructed according to Construction 7.1 and N (Xa) =

N (Xa)(1
2
, γ, δ∗) for each a ∈ Σ∪ {r, c} is constructed according to Construction 6.1 where

γ =
ε− δ2 − δ3

(34|Q|)4
(7.15)

and δ∗ = (δ1, 0, δ3, δ4).

We also define the I/O CRN N = N(M, ε, δ) = (U,R, S) to be the join of this family

of I/O CRNs

N =
⊔
N . (7.16)

We note that N from Construction 7.2 is indeed an I/O CRN because the family N is

a modular family of I/O CRNs, and we also note that the set of input species U matches

equation (7.1) defined earlier.

Theorem 7.3. If M = (Q,Σ,∆, I, F ) is an NFA and ε, δ = (δ1, δ2, δ3, δ4) are strictly

positive real numbers satisfying

δ1, δ2, δ3, δ4 <
1

20
, (7.17)

δ2 + δ3 < ε, (7.18)

and N = N(M, ε, δ) is constructed according to Construction 7.2, then

N |=δ
ε Φ(M). (7.19)

The rest of this chapter is devoted to proving the above theorem. The proof is rather

extensive and split up into many lemmas.

Assume the hypothesis of Theorem 7.3. We begin by constructing an initial state for

N that we will use to simulate M . Since N consists of signal conditioning I/O CRNs

from chapter 6, we want this initial state of N to initialize each of its signal conditioning
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modules according to Construction 6.1. Therefore, let N (X) = (U (X), R(X), S(X)) be the

signal conditioning module of N for the input species X ∈ U and let x
(X)
0 be the initial

state of N (X) constructed according to Construction 6.1. Now let x0 be a state of N

defined by

(∀q ∈ I) x0(Yq) = 1 = 1− x0(Y q),

(∀q ∈ Q \ I) x0(Yq) = 0 = 1− x0(Y q),

(∀q ∈ Q) x0(Zq) = 0 = 1− x0(Zq),

and

(∀X ∈ U)(∀X̂ ∈ S(X)) x0(X̂) = x
(X)
0 (X̂).

Therefore the initial state x0 ensures that every signal conditioning module N (X) is

initialized properly . The initial state x0 is also defined such that the set of state species

encode the set of start states I and the portal species Zq encode the empty set. We also

note that x0(Yq) + x0(Y q) = 1 and x0(Zq) + x0(Zq) = 1 for all q ∈ Q.

It is important to notice that each signal conditioning module N (X) = N (X)(1
2
, γ, δ∗)

is constructed with the parameter 1
2

corresponding to the delay introduced by the module,

γ (which is defined in Construction 7.2) corresponding to how cleaned up the signal

becomes, and δ∗ = (δ1, 0, δ3, δ4) being the robustness parameters2.

Observation 7.4. N,x0 |=δ∗
γ Φ(X) for each X ∈ U where Φ(X) = Φ(X)(1

2
) is the signal

conditioning requirement from chapter 6.

Proof. This follows from Theorem 6.2 which says that N (X),x
(X)
0 |=δ∗

γ Φ(X) along with the

fact that N is a modular composition I/O CRNs which includes N (X) for each X ∈ U .

This observation simply states that the signal conditioning modules satisfy their

requirements. Therefore within 1
2

time, each module will clean up an input event with

2The reason δ∗ has a measurement function perturbation of zero is because its output signal is not
being measured but instead is being passed to the I/O CRN N∗.
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up to δ1 amount of error to have at most γ amount of error. This is an important step

for N∗ to appropriately compute the logic of the NFA because N∗ uses the preprocessed

input species as catalysts for the computation.

We now enumerate the ODEs generated by the I/O CRN N . Using the mass action

function (5.11), for each q ∈ Q, the ODEs of the species Yq, Zq, Y q, Zq of N are

dyq
dt

= k2x
∗
czqyq − k2x

∗
czqyq + k2y

2
qyq − k2yqy

2
q, (7.20)

dzq
dt

= −k1x
∗
rzq +

∑
(s,a,q)∈∆

k1x
∗
ayszq, (7.21)

dyq
dt

= −dyq
dt
, (7.22)

dzq
dt

= −dzq
dt
, (7.23)

respectively.

Notice that dyq
dt

+
dyq
dt

= 0 and dzq
dt

+ dzq
dt

= 0. This implies that the sum of the

concentrations of Yq and Y q is always a constant and the sum of the concentrations of Zq

and Zq is always a constant. Unfortunately, we cannot assume that these sums are equal

to 1 (even though that is how they were initialized) because we must take into account

the initial state perturbation. Therefore, for each q ∈ Q we define the constants p(Yq)

and p(Zq) to be the sums of the concentrations of the corresponding state species and

portal species, respectively.

We prove that N,x0 |=δ
ε Φ by showing that N and x0 robustly satisfy a family of

weaker requirements. To formally state these new requirements, a bit more notation and

terminology is needed.

For A ⊆ Q we use YA = {Yq | q ∈ A} and ZA = {Zq | q ∈ A} to denote the set of all

state species of A and portal species of A, respectively.

For B ⊆ Q and vector x ∈ [0,∞)YQ , we say that YQ encodes B in x if (∀q ∈ B)

x(Yq) = p(Yq) and (∀q ∈ Q \B) x(Yq) = 0.
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We also have terminology for approximately encoding a set. For η ≥ 0, we say that

YQ η-encodes B in x if (∀q ∈ B) |p(Yq) − x(Yq)| < η and (∀q ∈ Q \ B) x(Yq) < η. We

extend this terminology to the set of portal species ZQ in the obvious way.

We now specify the new family of requirements. For w ∈ Σ∗, let Φw = (αw, φw) be a

requirement where αw is defined by

αw(u, V, h) ≡
[
α(u, YF , h) and w(u) = w and V = YQ

]
, (7.24)

and where φw is defined by

φ(u,v) ≡ (∀t ≥ τ(u))
[
YQ encodes ∆̂(I, w(u)) in v(t)

]
. (7.25)

Therefore the requirement Φw requires that if the I/O CRN receives an input that presents

the string w ∈ Σ∗, then after processing w it must output a complete encoding of ∆̂(I, w).

Lemma 7.5. If η is a strictly positive real number such that η < ε − δ2 − δ3 and

N,x0 |=δ∗
η Φw for all w ∈ Σ∗, then

N,x0 |=δ
ε Φ(M).

Proof. Assume the hypothesis. Let c = (u, V, h) be a context that satisfies α(c), let

ĉ = (û, V, ĥ) be (δ1, δ2)-close to c, let x̂0 be δ3-close to x0, let N̂ be δ4-close to N , let

w = w(u), and let ĉw = (û, YQ, h0). It suffices to show that N̂ĉ,x̂0 is ε-close to a signal

v ∈ C[V ] such that Φ(u,v) is satisfied.

By the hypothesis, we know that N,x0 |=δ∗
η Φw. It follows that YQ η-encodes ∆̂(I, w)

in N̂ĉw,x̂0(t) for all t ≥ τ(u). If the NFA M accepts the string w, then F ∩ ∆̂(I, w) 6= ∅,

so there exists a q ∈ F such that N̂ĉw,x̂0(t)(Yq) > p(Yq)− η for all t ≥ τ(u).
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Since the perturbed initial state x̂0 is δ3-close to x0, it follows that p(Yq) > 1 − δ3.

Similarly, the measurement function can at most introduce δ2 error, therefore

N̂ĉw,x̂0(t)(Yq) > 1− δ2 − δ3 − η

for all t ≥ τ(u). Since η < ε − δ2 − δ3, it follows that N̂ĉw,x̂0(t)(Yq) > 1 − ε, and since

Yq ∈ V , the function N̂ĉ,x̂0 is ε-close to satisfying ψ1 of φ.

Similarly, if M rejects w, then F ∩ ∆̂(I, w) = ∅, therefore for all Y ∈ V and t ≥ τ(u),

N̂ĉ,x̂0(t)(Y ) < η + δ2 < ε. Therefore N̂ĉ,x̂0 is ε-close to satisfying ψ2 of φ. It follows

that N̂ĉ,x̂0 is ε-close to a function v ∈ C[V ] such that the I/O requirement φ(u,v) holds.

Therefore N,x0 |=δ
ε Φ.

To finish the proof of Theorem 7.3, it now suffices to show that N,x0 |=δ∗
η Φw holds

for all w ∈ Σ∗ for some η < ε − δ2 − δ3. We prove this via induction over the strings

w ∈ Σ∗. For the remainder of the proof, we explicitly define the constant

η =
ε− δ2 − δ3

(80|Q|)2
(7.26)

noting that indeed η < ε− δ2 − δ3.

Before we begin the induction, we first prove some necessary inequalities used through-

out the proof. These inequalities are left in their most general form so that they can easily

be referenced when needed. We also note that our specification for the rate constants k1

and k2 in Construction 7.1 and the constraints on the parameters ε and δ in Theorem 7.3

were selected so as to satisfy these inequalities. Tighter bounds on these parameters may

exist that also satisfy these inequalities, but in this chapter we aim only to demonstrate

that our NFA construction is indeed robust.
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Observation 7.6. The following inequalities hold where the constant n∗ = 1
20

.

δ3(1 + δ3)

(1− δ3)2
<

(
1− δ4

k2

)2

8
(

1 + δ4
k2

) (7.27)

γ <
η
(

1− δ4
k2

)2

(1− δ3)2

16
(

1 + δ4
k2

)
(1 + δ3)

(7.28)

8(1 + δ3)δ3

7
(

1−δ3
2

(
1− δ4

k2

)
− 9δ3

8

) < 1 (7.29)

γ <
η

4k1|Q|(1 + δ3)
(

1 + δ4
k1

) (7.30)

γ(k1 + δ4)(1 + δ3)

(k1 − δ4)(1− γ)(1− η∗)
<
η

4
(7.31)

(k1 + δ4)γ(1 + δ3) <
η

12
(7.32)(

1− δ4
k2

)
(1− γ)(1− δ3 − η∗)− 1

6
(1 + δ3)2

(
1 + δ4

k2

)3(
1− δ4

k2

)
(1− γ)(1− δ3 − η∗) +

(
1 + δ4

k2

)
(1 + δ3)η∗

>
2

3

(
1 +

δ4

k2

)
(7.33)

Proof. It is routine to verify that these inequalities hold. The equations (7.12), (7.13),

(7.15), and (7.26) specify the constants k1, k2, γ, and η, respectively, and the constraints

on ε and δ1, δ2, δ3, δ4 can be found in Theorem 7.3.

We now prove the base case of our induction—an encoding of the empty string λ.

This base case is one of the most difficult proofs of the main theorem because of the

complexity of the signal restoration algorithm. We simply need to show that the signal

restoration algorithm is capable of keeping the encoding of the set I indefinitely, but as

we will see, this is not trivial even with our previous analysis from chapter 4.

Lemma 7.7. N,x0 |=δ∗
η Φλ.

Proof. Let c = (u, V, h) be a context satisfying αλ(c), let ĉ = (û, V, h) be (δ1, 0)-close to

c, let x̂0 be δ3-close to x0, and let N̂ be δ4-close to N . It suffices to show that N̂ĉ,x̂0 is
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η-close to a function v ∈ C[V ] which satisfies φλ(u,v). Therefore we must show that for

all t ≥ 1, YQ η-encodes I at time t.

We begin by showing that for q ∈ I, yq(t) > p(Yq) − η for all t ≥ 1, therefore we

assume that q ∈ I. The ODE for Yq in N̂ is

dyq
dt

= k̂2x
∗
czqyq − k̂2x

∗
czqyq + k̂2y

2
qyq − k̂2yqy

2
q,

where k̂2 is a function of t that is a perturbation of the true rate constant k2.

Since u encodes the empty string, it contains no symbol events, and since û is δ1-close

to u, the input species Xc has concentration less than δ1 for all t ∈ [0,∞). Therefore

the preprocessed input species X∗c has concentration less than γ for all t ≥ 1
2
. Since

the species X∗c is initialized to 0 and x̂0 is δ3-close to x0, it is easy to show that X∗c has

concentration less than δ3 for all t ∈ [0, 1
2
].

We first show that during the time interval [0, 1
2
] the concentration of Yq is unaffected

by noise from unwanted reactions. We do this by assuming the worst possible scenarios

and bounding how much Yq can change even under those conditions. We begin by noting

that the ODE for Yq during the interval [0, 1
2
] is bounded by

dyq
dt

> k̂2y
2
qyq − k̂2yqy

2
q − k̂2δ3zqyq.

Since k̂2 is δ4-close to the constant k2, we have the bound

dyq
dt

> (k2 − δ4)y2
qyq − (k2 + δ4)yqy

2
q − (k2 + δ4)δ3zqyq.

The concentration of Zq is bounded by p(Zq), so

dyq
dt

> (k2 − δ4)y2
qyq − (k2 + δ4)yqy

2
q − (k2 − δ4)δ3p(Zq)yq.
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Since yq = p(Yq)− yq, we can simplify the ODE to

dyq
dt

> (k2 − δ4)y2
q (p(Yq)− yq)− (k2 + δ4)yq(p(Yq)− yq)2 − (k2 − δ4)δ3p(Zq)yq.

At this point, everything in the ODE is a constant except for the function yq. If we let a,

b, c, and p be the constants

a = k2 − δ4, b = k2 + δ4, c = (k2 − δ4)p(Zq)δ3, p = p(Yq),

then we can rewrite the ODE in a simpler form

dyq
dt

> ay2
q (p− yq)− byq(p− yq)2 − cyq.

The above ODE has identical structure to that of equation (4.16) from the termolecular

signal restoration algorithm. This means that if the inequality c < p2a2

4(a+b)
holds, we can

make use of Theorem 4.2 to bound the concentration of Yq during the interval [0, 1
2
].

To show that c < p2a2

4(a+b)
, it suffices to show that 4(a+b)c

p2a2
< 1. By expanding the

constants, we know

4(a+ b)c

p2a2
=

4(2k2)(k2 + δ4)p(Zq)δ3

p(Yq)2(k2 − δ4)2
= 8δ3

(
1 + δ4

k2

)
(

1− δ4
k2

)2

(
p(Zq)

p(Yq)2

)
.

Since the input can be perturbed by at most δ3, we know p(Zq)

p(Yq)2
< 1+δ3

(1−δ3)2
, so

4(a+ b)c

p2a2
<

8δ3(1 + δ3)

(1− δ3)2

(
1 + δ4

k2

)
(

1− δ4
k2

)2 .

It then follows from the inequality (7.27) from Observation 7.6 that 4(a+b)c
p2a2

< 1.
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At this point, we know that during the interval [0, 1
2
] the behavior of Yq is bounded

by the termolecular signal restoration algorithm and that the constant c is small enough

to introduce bistability to the system. We now show that the concentration of Yq is

attracted to the stable fixed point close to 1 and therefore remains unaffected.

Let E1 be the constant constructed with a, b, c, and p according to Theorem 4.2. Recall

that this constant corresponds to the unstable equilibrium point of the signal restoration

algorithm. Therefore, if yq(0) > E1, then Yq will converge to the high equilibrium point,

whereas if yq(0) < E1 then it would converge to 0.

By Observation 4.3 and the fact that c < p2a2

4(a+b)
, we know that

E1 < p

(
b

a+ b

)
+

2c

pa
< p

(
b

a+ b

)
+

2

pa

(
p2a2

4(a+ b)

)
= p− p

2

(
a

a+ b

)
.

By expanding the constants a, b, and p, we obtain

E1 < p(Yq)−
p(Yq)

2

(
k2 − δ4

2k2

)
< p(Yq)−

1− δ3

4

(
1− δ4

k2

)
.

The inequality (7.27) from Observation 7.6 tells us

δ3 <
(1− δ3)2

(
1− δ4

k2

)2

8(1 + δ3)
(

1 + δ4
k2

) <
1− δ3

4

(
1− δ4

k2

)
,

therefore it is clear that E1 < p(Yq)− δ3 < yq(0).

Since E1 is the decision point of the signal restoration algorithm, Theorem 4.2 tells

us that the concentration of Yq will converge away from the constant E1 to the constant

E2. It is now easy to show that for all t ∈ [0, 1
2
], yq(t) > yq(0). Therefore we know that

yq(
1
2
) > yq(0).

We now focus on the behavior of Yq during the time interval [1
2
,∞). Recall that the

signal conditioner for Xc is guaranteed to activate at time 1
2
. Therefore, for all t ≥ 1

2
we
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know that x∗c(t) < γ. Taking this into account, we can bound the ODE for Yq during the

interval [1
2
,∞) by

dyq
dt

> k̂2y
2
qyq − k̂2yqy

2
q − k̂2γzqyq,

> (k2 − δ4)y2
q (p(Yq)− yq)− (k2 + δ4)yq(p(Yq)− yq)2 − (k2 + δ4)γp(Zq)yq.

Now if redefine the constants a, b, c, and p to be

a = k2 − δ4, b = k2 + δ4, c = (k2 + δ4)p(Zq)γ, p = p(Yq),

then we can rewrite the above ODE as

dyq
dt

> ay2
q (p− yq)− byq(p− yq)2 − cyq.

We again show that c < p2a2

4(a+b)
holds with these new constants with

4(a+ b)c

p2a2
=

4(2k2)(k2 + δ4)p(Zq)γ

p(Yq)2(k2 − δ4)2
< 8γ

(
1 + δ4

k2

)
(

1− δ4
k2

)2

(
1 + δ3

(1− δ3)2

)
,

and therefore by inequality (7.28) from Observation 6.12 we know that

4(a+ b)c

p2a2
<

1

2
. (7.34)

We now redefine the constants E1 and E2 to be constructed with the new constants a,

b, c, and p according to Theorem 4.2 as before. It is easy to show that E1 < yq(
1
2
), so we

know that yq(t) is converging toward the value E2.
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We now show that the constant E2 is sufficiently high to restore the concentration of

Yq to at least p(Yq)− η. First we note that

2c

pa
=

2γ(k2 + δ4)p(Zq)

p(Yq)(k2 − δ4)
> p(Yq)− 2γ

(
1 + δ4

k2

1− δ4
k2

)(
1 + δ3

1− δ3

)
,

and so with inequality (7.28) we know that

2c

pa
>
η

8
. (7.35)

It follows from Observation 4.3 that

E2 > p− 2c

pa
> p(Yq)−

η

8
> p(Yq)− η.

Therefore we can use Corollary 4.5 to bound the amount of time it takes the signal

restoration reactions to restore the concentration of Yq to p(Yq)− η from p(Yq)− δ3 with

t <
a+ b

abp2(1− c4(a+b)
p2a2

)
log u,

where u = (p−η−E1)(E2−p+δ3)
(p−δ3−E1)(E2−p+η)

and where t in this case is the amount of time required for

the concentration of Yq to reach p(Yq)− η. This is a complicated equation, therefore we

simplify some of its parts.

It follows from equation (7.34) that

a+ b

abp2(1− c4(a+b)
p2a2

)
<

2(a+ b)

abp2
.

Since p > E2, we can also bound the inside of the logarithm by

u =
(p− η − E1)(E2 − p+ δ3)

(p− δ3 − E1)(E2 − p+ η)
<

pδ3

(p− δ3 − E1)(E2 − p+ η)
,
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and by Observation 4.3 and equation (7.35), we know that

u <
pδ3

(p( a
a+b

)− 2c
pa
− δ3)(7

8
η)

<
8pδ3

7η(p( a
a+b

)− η
8
− δ3)

<
8p(Yq)δ3

7η
(
p(Yq)

2

(
1− δ4

k2

)
− δ3

8
− δ3

) =
8(1 + δ3)δ3

7η
(

1−δ3
2

(
1− δ4

k2

)
− 9δ3

8

) ,
and by the inequality (7.29) from Observation 7.6 we know that u < 1

η
.

This simplifies our bound for the amount of time to reach concentration p(Yq)− η to

t <
2(a+ b)

abp2
log

1

η
=

−4k2 log η

(k2 − δ4)(k2 + δ4)p(Yq)2
<

−4 log η

k2

(
1− δ4

k2

)(
1 + δ4

k2

)
(1− δ3)2

.

Using the definition of k2 from equation (7.13), it is easy to verify that

k2 >
−8 log η(

1− δ4
k2

)(
1 + δ4

k2

)
(1− δ3)2

.

It follows that within 1
2

time, the concentration of Yq reaches p(Yq)− η, and therefore for

all t ≥ 1, yq(t) > p(Yq)− η.

This finishes one half of the proof, namely, that if q ∈ I that the I/O CRN N robustly

keeps the value of Yq η-close to p(Yq). It remains to be shown that for q ∈ Q\ I, yq(t) < η

for all t ≥ 1. This follows by the symmetry of Yq and Y q and is omitted.

The above lemma shows that the base case of our induction holds. To complete the

proof of the theorem, it suffices to show that

N,x0 |=δ∗

η Φw =⇒ N,x0 |=δ∗

η Φwa, (7.36)

where w ∈ Σ∗ and a ∈ Σ.

For the rest of this chapter, let w ∈ Σ∗ and a ∈ Σ and assume the inductive hypothesis

N,x0 |=δ∗
η Φw holds. Let c = (u, V, h) be a context satisfying αwa(c), let ĉ = (û, V, h) be



www.manaraa.com

94

(δ1, 0)-close to c, let x̂0 be δ3-close to x0, and let N̂ be δ4-close to N . It suffices to show

that N̂ĉ,x̂0 is η-close to a function v ∈ C[V ] which satisfies φwa(u,v). Therefore we must

show that for all t ≥ τ(u) the set YQ η-encodes ∆̂(I, wa) at time t.

Let I = [b, b+ 12] be the final symbol event of the input u. Then we know that I is

an a-event and that τ(u) = b+ 12. We also know by the inductive hypothesis that the

following observation holds.

Observation 7.8. YQ η-encodes ∆̂(I, w) during the interval [b, b+ 8].

Proof. Let u∗ be a terminal input such that u∗(t) = u(t) for all t ∈ [0, b] and u∗(t) = 03

for all t > b. Then w(u∗) = w and τ(u∗) ≤ b. Since N,x0 |=δ∗
η Φw by our inductive

hypothesis, we know that YQ η-encodes ∆̂(I, w) at time τ(u∗).

Since u and u∗ agree at every t ∈ [0, b], the concentrations of Yq for each q ∈ Q must

also agree at every time t ∈ [0, b]. Therefore YQ η-encodes ∆̂(I, w) at time b.

Finally, the input species Xc is below δ1 during the interval [b, b+ 8], so the values of

the species in YQ will be maintained by the signal restoration reactions as shown in the

proof of Lemma 7.7.

Observation 7.9. x∗d(b) < γ for each symbol d ∈ Σ ∪ {r, c}.

Proof. This follows from the fact that for all d ∈ Σ∪ {r, c} the concentration of input Xd

is less than δ1 in the interval [b− 1
2
, b]. Therefore the preprocessed input species Xd has

time to drop below γ before time b.

Lemma 7.10. ZQ η-encodes ∅ at time b+ 4.

Proof. For q ∈ Q, the ODE for Zq is

dzq
dt

= −k̂1x
∗
rzq +

∑
(s,a,q)∈∆

k̂1x
∗
ayszq

< −(k1 − δ4)x∗rzq +
∑

(s,a,q)∈∆

(k1 + δ4)x∗ap(Yr)zq.

3We use 0 to denote the state vector containing all zeros.
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The interval [b, b+ 4] is an Xr-pulse and therefore every species X∗a for a ∈ Σ must have

concentration γ-close to zero. Therefore

dzq
dt

< −(k1 − δ4)x∗rzq +
∑

(s,a,q)∈∆

p(Yr)(k1 + δ4)γzq

< −(k1 − δ4)x∗rzq + |Q|(1 + δ3)(k1 + δ4)γzq.

During the interval [b+ 1, b+ 2], the species Xr is δ1-close to one. Therefore during the

interval [b+ 1.5, b+ 2] the species X∗r is γ-close to 1. Thus

dzq
dt

< −(k1 − δ4)(1− γ)zq + |Q|(1 + δ3)(k1 + δ4)γzq.

Let f̂ , b̂, and p̂ be constants defined by

f̂ = |Q|(1 + δ3)(k1 + δ4)γ b̂ = (k1 − δ4)(1− γ), p̂ = p(Zq),

then we can rewrite the above ODE as

dzq
dt

< f̂zq − b̂zq,

which has identical structure to the ODE from Construction 6.11. By Lemma 6.12, we

have the bound

zq(b+ 2) < p̂

(
f̂

f̂ + b̂

)(
1− e−(f̂+b̂) 1

2

)
+ zq(b+ 1.5) · e−(f̂+b̂) 1

2

< p̂

(
f̂

f̂ + b̂

)(
1− e−(f̂+b̂) 1

2

)
+ p̂e−(f̂+b̂) 1

2

= p̂

(
f̂

f̂ + b̂

)
+ p̂

(
b̂

f̂ + b̂

)
e−(f̂+b̂) 1

2 < p̂f̂ + p̂e−
b̂
2 .
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Using the definition of k1 from equation (7.12), it is easy to show that k1 > δ4 +

2
1−γ log

(
4(1+δ3)

η

)
, therefore

zq(b+ 2) < p̂f̂ +
η

4
.

Equation (7.30) from Observation 7.6 tells us that γ < η

4k1|Q|(1+δ3)
(

1+
δ4
k1

) , therefore p̂f̂ > η
4
,

and so zq(b+ 2) < η
2
.

During the interval [b+ 2, b+ 4], the derivative of Zq is bounded by

dzq
dt

< f̂(p̂− zq), < p̂f̂ , <
η

4
,

which means less than η
2

of Zq is produced over the interval [b + 2, b + 4]. Therefore

zq(b+ 4) < η.

Lemma 7.11. ZQ η∗-encodes ∆̂(I, wa) during the interval [b+ 8, b+ 12] where η∗ = 1
20

.

Proof. We prove this in two steps. First we prove that if q ∈ ∆̂(I, wa), then for all

t ∈ [b+ 8, b+ 12] zq(t) > p(Zq)− η∗, and second we prove that if q 6∈ ∆̂(I, wa), then for

all t ∈ [b+ 8, b+ 12] zq(t) < η∗.

For the first part, let q ∈ ∆̂(I, wa). Then there exists a state s ∈ ∆̂(I, w) such that

(s, a, q) ∈ ∆. This means that there is at least one reaction from equation (7.7) and

Construction 7.1 that computes the transition (s, a, q) ∈ ∆. Therefore we can bound the

ODE corresponding to Zq by

dzq
dt

= −k̂1x
∗
rzq +

∑
(s,a,q)∈∆

k̂1x
∗
ayszq,

> −k̂1x
∗
rzq + k̂1x

∗
ayszq,

> −(k1 + δ4)x∗rzq + (k1 − δ4)x∗ayszq.
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During the interval [b + 5, b + 6], the input signal is at the peak of the Xa-pulse, and

therefore during the interval [b+ 5.5, b+ 6] we know that

dzq
dt

> −(k1 + δ4)γzq + (k1 − δ4)(1− γ)yszq.

By Observation 7.8, the set YQ η-encodes ∆̂(I, w) during [b, b+ 8], and since s ∈ ∆̂(I, w)

we know that

dzq
dt

> −(k1 + δ4)γzq + (k1 − δ4)(1− γ)(1− η)zq.

Now let f̂ , b̂, and p̂ be the constants

f̂ = (k1 − δ4)(1− γ)(1− η) b̂ = (k1 + δ4)γ p̂ = p(Zq),

so that

dzq
dt

> f̂zq − b̂zq.

Then by Lemma 6.12, we have the bound

zq(b+ 6) > zq(b+ 5.5)e−(f̂+b̂) 1
2 + p̂

(
f̂

f̂ + b̂

)(
1− e−(f̂+b̂) 1

2

)
> p̂

f̂

f̂ + b̂
− p̂e−

f̂
2 > p̂

(
1− b̂

f̂

)
− p̂e−

f̂
2 = p̂− p̂

(
b̂

f̂
+ e−

f̂
2

)
.

Using the definition of k1 from equation (7.12), it is easy to show that k1 > δ4 +

2
(1−γ)(1−η)

log
(

4(1+δ3)
η

)
. Therefore we know that

zq(b+ 6) > p̂− p̂ b̂
f̂

+
η

4
.
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By inequality (7.31) from Observation 7.6, we know that

p̂
b̂

f̂
= p(Zq)

γ(k1 + δ4)

(k1 − δ4)(1− γ)(1− η∗)
<

γ(k1 + δ4)(1 + δ3)

(k1 − δ4)(1− γ)(1− η∗)
<
η

4
.

therefore we have the bound

zq(b+ 6) > p̂− η

2
.

Finally, by inequality (7.32) of Observation 7.6, we know that Zq is bounded during the

interval [b+ 6, b+ 12], Zq by

dzq
dt

> −b̂p̂ = −(k1 + δ4)γp(Zq) > −(k1 + δ4)γ(1 + δ3) > − η

12
,

therefore at most η
2

of Zq can be destroyed in this interval. Therefore for all t ∈ [b+8, b+12],

zq(t) > p(Zq)− η > p(Zq)− η∗.

It remains to be shown that if q 6∈ ∆̂(I, wa), then for all t ∈ [b+ 8, b+ 12] zq(t) < η∗.

Let q 6∈ ∆̂(I, wa). Then for all (s, a, q) ∈ ∆̂(I, wa), s 6∈ ∆̂(I, w). Therefore we have the

following bound for Zq in the interval [b+ 4, b+ 12].

dzq
dt

= −k̂1x
∗
rzq +

∑
(s,a,q)∈∆

k̂1x
∗
ayszq <

∑
(s,a,q)∈∆

k̂1x
∗
ayszq

< |Q|(k1 + δ4)(1 + δ3)η(1 + δ3) = |Q|(k1 + δ4)(1 + δ3)2η.

Therefore

zq(b+ 12) < zq(b+ 4) + 8|Q|(k1 + δ4)(1 + δ3)2η

< η + 8|Q|(k1 + δ4)(1 + δ3)2η < η∗.

Lemma 7.12. YQ β-encodes ∆̂(I, wa) at time b+ 10 where β = 1
20

.
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Proof. Recall that the ODE for Yq is

dyq
dt

= A+B,

where A = k̂2x
∗
czqyq − k̂2x

∗
czqyq and B = k̂2y

2
qyq − k̂2yqy

2
q. We begin by bounding the the

signal restoration part of the ODE with

B > yqyq
(
(k2 − δ4)yq − (k2 + δ4)yq

)
= −k2yqyq

(
2yq − p(Yq)

(
1− δ4

k2

))
.

Since yq +yq = p(Yq), it is not difficult to show that minimizing B under these constraints

yields the inequality

B > −k2

6
p(Yq)

3

(
1 +

δ4

k2

)3

.

Now let q ∈ ∆̂(I, wa). Then by Lemma 7.11, zq(t) > p(Zq)−η∗ for all t ∈ [b+8, b+12].

During the interval [b+ 9, b+ 10], the input species Xc is at a peak which means that X∗c

is above 1− γ during the interval [b+ 9.5, 10]. Therefore the derivative for Yq during this

interval is bounded by

dyq
dt

> k̂2x
∗
czqyq − k̂2x

∗
czqyq −

k2

6
p(Yq)

3

(
1 +

δ4

k2

)3

= â(p̂− yq)− b̂yq − ĉ

where

â = k2

(
1− δ4

k2

)
(1− γ)(1− δ3 − η∗)

b̂ = k2

(
1 +

δ4

k2

)
(1 + δ3)η∗

ĉ =
k2

6
p(Yq)

3

(
1 +

δ4

k2

)3

p̂ = p(Yq).
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This ODE is easily solvable, and therefore we obtain the bound

yq(b+ 9.75) >
p̂â− ĉ
â+ b̂

(
1− e−(â+b̂) 1

4

)
. (7.37)

After expanding the expression p̂â−ĉ
â+b̂

we obtain

p̂â− ĉ
â+ b̂

> p(Yq)


(

1− δ4
k2

)
(1− γ)(1− δ3 − η∗)− 1

6
(1 + δ3)2

(
1 + δ4

k2

)3(
1− δ4

k2

)
(1− γ)(1− δ3 − η∗) +

(
1 + δ4

k2

)
(1 + δ3)η∗


By inequality (7.33) from Observation 7.6 we obtain

p̂â− ĉ
â+ b̂

>
2

3
p(Yq)

(
1 +

δ4

k2

)
. (7.38)

Using the specification of k2 from equation (7.13), it is easy to show that k2 > δ4 +

4 log 4
(1−γ)(1−δ3−η∗) . Therefore we know that

1− e−(â+b̂) 1
4 > 1− e−â

1
4 =

3

4
.

Plugging this inequality along with equation (7.38) into equation (7.37), we obtain

yq(b+ 9.75) >
2

3
p(Yq)

(
1 +

δ4

k2

)(
3

4

)
=
p(Yq)

2

(
1 +

δ4

k2

)
.

During the interval [b+ 9.75, 10], the derivative of Yq is still bounded by

dyq
dt

> k̂2x
∗
czqyq − k̂2x

∗
czqyq − k2yqyq

(
2yq − p(Yq)

(
1− δ4

k2

))
= k̂2x

∗
czqyq − k̂2x

∗
czqyq + k2yqyq

(
2yq − p(Yq)

(
1 +

δ4

k2

))
.
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Since the concentration of Yq is greater than p(Yq)

2

(
1 + δ4

k2

)
at time t = 9.75, we know

that the ODE of Yq during the interval [b+ 9.75, b+ 10] is bounded by

dyq
dt

> k̂2x
∗
czqyq − k̂2x

∗
czqyq > â(p̂− yq)− b̂yq.

By Lemma 6.12 we obtain the bound

yq(b+ 10) > p̂

(
â

â+ b̂

)(
1− e−(â+b̂) 1

4

)
+ yq(b+ 9.75) · e−(â+b̂) 1

4

> p̂

(
â

â+ b̂

)(
1− e−â

1
4

)
> p̂

(
1− b̂

â

)(
1− e−â

1
4

)
> p̂− p̂ b̂

â
− p̂e−â

1
4 .

Since β
2
>

(
1+

δ4
k2

)
(1+δ3)2η∗(

1− δ4
k2

)
(1−γ)(1−δ3−η∗)

,

p̂
b̂

â
= p(Yq)

(
1 + δ4

k2

)
(1 + δ3)η∗(

1− δ4
k2

)
(1− γ)(1− δ3 − η∗)

<

(
1 + δ4

k2

)
(1 + δ3)2η∗(

1− δ4
k2

)
(1− γ)(1− δ3 − η∗)

<
β

2
.

and since k2 > δ4 +
4 log

(
2(1+δ3)

β

)
(1−γ)(1−δ3−η∗)

p̂e−â
1
4 <

β

2
,

so we have the bound yq(b+ 10) > p(Yq)− β.

It remains to be shown that if q 6∈ ∆̂(I, wa) that yq(b + 10) < β. This holds by

symmetry of Yq and Y q and is omitted.

Lemma 7.13. For all t ≥ τ(u), YQ η-encodes ∆̂(I, wa) at time t.

Proof. This lemma holds by a similar argument of the proof of Lemma 7.7. Lemma 7.12

shows that YQ β-encodes ∆̂(I, wa) at time b + 10, and the signal restoration reactions

restore the concentration to η by time b+ 12 and maintain it indefinitely.
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CHAPTER 8. CONCLUSION

In this thesis, we introduced two new notions for modular development of chemical

reaction networks (CRNs): closed sub-CRNs and input/output CRNs. Closed sub-CRNs

were defined using a Kuratowski closure operator and proved to be a useful tool for

modularly extending and composing CRNs. In chapter 3, we explored the full generality

of these extensions and demonstrated that a large class of concentration signals can be

constructed using these extensions. Using closed sub-CRNs, it is more natural to design

CRNs to produce a specific concentration signal by breaking the signal into components

and composing them together. One drawback to these extensions is that some of them

produce CRNs that are not well-behaved if their rate constants or initial concentrations are

not set precisely. Moreover, many of the extensions are tightly coupled to the underlying

structure of their closed sub-CRNs rather than acting on their concentration signals alone.

The I/O CRN model and the notion of robustness presented in chapter 5 require

that these drawbacks are avoided. We investigated the capacity for robust computation

and modularity of I/O CRNs in chapter 7 and showed that they are capable of robustly

simulating any nondeterministic finite automata. This construction consisted of several

modules including the CRNs studied in chapters 4 and 6 and demonstrates that I/O

CRNs are capable of robustly computing the regular languages.

Future research of modular and robust development of CRNs is likely to include inves-

tigating if deterministic CRNs can robustly simulate a Turing machine (with unbounded

memory). Under deterministic semantics, it is not even known if CRNs are capable of

unrobust Turing machine computation. However, understanding exactly what can and



www.manaraa.com

103

cannot be robustly computed with deterministic CRNs is an important boundary to

explore.

Another research direction will include investigating which CRN extension operators

can be robustly implemented with closed sub-CRNs and I/O CRNs. Many of the most

general CRN extension operators demonstrated in chapter 3 are not robust with respect

to rate constants and initial states, and developing an analogous extension method which

preserves robustness is necessary to make the method practical.
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